

CSE 417
Algorithms and Complexity

Winter 2023
Lecture 14

Finishing Minimum Spanning Trees

Announcements

- Midterm, Wednesday, Feb 8
- Closed book, closed notes, no calculators
- Time limit: 50 minutes
- Answer the problems on the exam paper.
- If you need extra space use the back of a page
- Problems are not of equal difficulty, if you get stuck on a problem, move on.
- 'Justify your answer" means give a short and convincing explanation. Depending on the situation, justifications can involve counter examples, or cite results established in the text or in lecture.

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- Prim's Algorithm:

Extend a tree by including the cheapest out going edge

- Kruskal's Algorithm: Add the cheapest edge that joins disjoint components

Application: Clustering

- Given a collection of points in an rdimensional space and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(S_{1}, S_{2}\right)=\min \left\{\operatorname{dist}(x, y) \mid x\right.$ in S_{1}, y in $\left.S_{2}\right\}$

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

Let $C=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{n}\right\}\right\} ; \mathrm{T}=\{ \}$ while $|C|>K$

Let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

K-clustering

Shortest paths in directed graphs vs undirected graphs

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence

Finding a minimum branching

Another MST Algorithm

- Choose minimum cost edge into each vertex
- Merge into components
- Repeat until done

Idea for branching algorithm

- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat

Midterm Questions????

