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CSE 417
Algorithms and Complexity

Winter 2023
Lecture 13

Minimum Spanning Trees
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Announcements
• Midterm,  Wednesday,  Feb 8 
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Minimum Spanning Tree
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Greedy Algorithms for Minimum Spanning 
Tree

• Prim’s Algorithm: 
Extend a tree by 
including the cheapest 
out going edge

• Kruskal’s Algorithm: 
Add the cheapest edge 
that joins disjoint 
components
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Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest out 
going edge
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Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint 
components
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Why do the greedy algorithms work?

• For simplicity, assume all edge costs are 
distinct
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Edge inclusion lemma

• Let S be a subset of V, and suppose e = (u, v) is 
the minimum cost edge of E, with u in S and v 
in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a 
minimum spanning tree

S V - S

e
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Proof 

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S and v1

in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge 

between S and V-S

e1

2/3/2002 CSE 417 9

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST 
by Prim or Kruskal, the edge is the minimum 
cost edge between S and V-S for some set S.
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Prim’s Algorithm

S = { };    T = { };

while S != V

choose the minimum cost edge                    

e = (u,v), with u in S, and v in V-S

add e to T

add v to S
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Prove Prim’s algorithm computes an MST 

• Show an edge e is in the MST when it is added 
to T
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Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}};  T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the 

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T
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Prove Kruskal’s algorithm computes an 
MST 

• Show an edge e is in the MST when it is added 
to T
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MST Implementation and runtime

• Prim’s Algorithm
– Implementation, runtime:  just like Dijkstra’s

algorithm

– Use a heap,  runtime O(m log n)

• Kruskal’s Algorithm
– Sorting edges by cost:  O(m log n)

– Managing connected components uses the Union-
Find data structure

• Amazing, pointer based data structure

• Very interesting mathematical result
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Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations

– Union – merge two sets to create their union

– Find – determine which set an item appears in

• Check Find(v)  Find(w) to determine if (v,w) joins 
separate components

• Do Union(v,w) to merge sets
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Up-Tree for DS Union/Find

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate

state

Roots are the names of each set.

Observation: we will only traverse these trees upward 
from any given node to find the root.

Idea: reverse the pointers (make them point up from 
child to parent).  The result is an up-tree.
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Application: Clustering

• Given a collection of points in an r-
dimensional space and an integer K, divide the 
points into K sets that are closest together
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Distance clustering

• Divide the data set into K subsets to maximize 
the distance between any pair of sets

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}
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Divide into 2 clusters
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Divide into 3 clusters
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Divide into 4 clusters
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Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}};  T = { }

while |C| > K

Let e = (u, v) with u in Ci and v in Cj be the 

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj
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K-clustering
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Shortest paths in directed graphs vs 
undirected graphs
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What about the minimum spanning 
tree of a directed graph?

• Must specify the root r

• Branching:  Out tree with root r
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Assume all vertices reachable from r Also called an arborescence
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Finding a minimum branching
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Another MST Algorithm

• Choose minimum cost 
edge into each vertex

• Merge into components

• Repeat until done
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Idea for branching algorithm

• Select minimum cost 
edge going into each 
vertex

• If graph is a branching 
then done

• Otherwise collapse 
cycles and repeat

r
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