
1

CSE 417
Algorithms and Complexity

Winter 2023
Lecture 13

Minimum Spanning Trees

2/3/2002 CSE 417 1

Announcements
• Midterm, Wednesday, Feb 8

2/3/2002 CSE 417 2

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

21
15

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

2/3/2002 CSE 417 3

Greedy Algorithms for Minimum Spanning
Tree

• Prim’s Algorithm:
Extend a tree by
including the cheapest
out going edge

• Kruskal’s Algorithm:
Add the cheapest edge
that joins disjoint
components

4

115

7

20

8

22

a

b c

d

e

2/3/2002 CSE 417 4

Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest out
going edge

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Prim’s

algorithm starting

from vertex a

Label the edges in

order of insertion2/3/2002 CSE 417 5

Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint
components

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Kruskal’s

algorithm

Label the edges in

order of insertion2/3/2002 CSE 417 6

2

Why do the greedy algorithms work?

• For simplicity, assume all edge costs are
distinct

2/3/2002 CSE 417 7

Edge inclusion lemma

• Let S be a subset of V, and suppose e = (u, v) is
the minimum cost edge of E, with u in S and v
in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a
minimum spanning tree

S V - S

e

2/3/2002 CSE 417 8

Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S and v1

in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge

between S and V-S

e1

2/3/2002 CSE 417 9

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST
by Prim or Kruskal, the edge is the minimum
cost edge between S and V-S for some set S.

2/3/2002 CSE 417 10

Prim’s Algorithm

S = { }; T = { };

while S != V

choose the minimum cost edge

e = (u,v), with u in S, and v in V-S

add e to T

add v to S

2/3/2002 CSE 417 11

Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added
to T

2/3/2002 CSE 417 12

3

Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}}; T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T

2/3/2002 CSE 417 13

Prove Kruskal’s algorithm computes an
MST

• Show an edge e is in the MST when it is added
to T

2/3/2002 CSE 417 14

MST Implementation and runtime

• Prim’s Algorithm
– Implementation, runtime: just like Dijkstra’s

algorithm

– Use a heap, runtime O(m log n)

• Kruskal’s Algorithm
– Sorting edges by cost: O(m log n)

– Managing connected components uses the Union-
Find data structure

• Amazing, pointer based data structure

• Very interesting mathematical result

2/3/2002 CSE 417 15

Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations

– Union – merge two sets to create their union

– Find – determine which set an item appears in

• Check Find(v)  Find(w) to determine if (v,w) joins
separate components

• Do Union(v,w) to merge sets

12/5/2022 CSE 332 16

Up-Tree for DS Union/Find

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate

state

Roots are the names of each set.

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

12/5/2022 CSE 332 17

Application: Clustering

• Given a collection of points in an r-
dimensional space and an integer K, divide the
points into K sets that are closest together

2/3/2002 CSE 417 18

4

Distance clustering

• Divide the data set into K subsets to maximize
the distance between any pair of sets

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}

2/3/2002 CSE 417 19

Divide into 2 clusters

2/3/2002 CSE 417 20

Divide into 3 clusters

2/3/2002 CSE 417 21

Divide into 4 clusters

2/3/2002 CSE 417 22

Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}}; T = { }

while |C| > K

Let e = (u, v) with u in Ci and v in Cj be the

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

2/3/2002 CSE 417 23

K-clustering

2/3/2002 CSE 417 24

5

Shortest paths in directed graphs vs
undirected graphs

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

2/3/2002 CSE 417 25

What about the minimum spanning
tree of a directed graph?

• Must specify the root r

• Branching: Out tree with root r

a

b

c
r

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4
a

b

c
r

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

Assume all vertices reachable from r Also called an arborescence
2/3/2002 CSE 417 26

Finding a minimum branching

r

48

10 102

41

2 2

r

4

2

4

2 2

2/3/2002 CSE 417 27

Another MST Algorithm

• Choose minimum cost
edge into each vertex

• Merge into components

• Repeat until done

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

2/3/2002 CSE 417 28

Idea for branching algorithm

• Select minimum cost
edge going into each
vertex

• If graph is a branching
then done

• Otherwise collapse
cycles and repeat

r

2/3/2002 CSE 417 29

