

Announcements

- Midterm, Wednesday, Feb 8

Minimum Spanning Tree

Greedy Algorithm 1
 Prim's Algorithm

- Extend a tree by including the cheapest out going edge

Greedy Algorithm 2
 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST
with Kruskal's algorithm
Label the edges in order of insertion

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose $e=(u, v)$ is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G - Or equivalently, if e is not in T, then T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.
- $T_{1}=T-\left\{e_{1}\right\}+\{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

Prim's Algorithm

$S=\{ \} ; \quad T=\{ \} ;$
while S != V
choose the minimum cost edge $e=(u, v)$, with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

```
Let C={{\mp@subsup{v}{1}{}},{\mp@subsup{v}{2}{}},\ldots.,{\mp@subsup{v}{n}{}}};T={}
while |C| > 1
```

 Let \(\mathrm{e}=(\mathrm{u}, \mathrm{v})\) with u in \(\mathrm{C}_{\mathrm{i}}\) and v in \(\mathrm{C}_{\mathrm{i}}\) be the minimum cost edge joining distinct sets in C
 Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$
Add e to T

MST Implementation and runtime

- Prim's Algorithm
- Implementation, runtime: just like Dijkstra's algorithm
- Use a heap, runtime $O(m \log n)$
- Kruskal's Algorithm
- Sorting edges by cost: $\mathrm{O}(\mathrm{m} \log \mathrm{n})$
- Managing connected components uses the UnionFind data structure
- Amazing, pointer based data structure
- Very interesting mathematical result

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Intermediate

 stateRoots are the names of each set.

Prove Kruskal's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
- Union - merge two sets to create their union
- Find - determine which set an item appears in
- Check Find $(v) \neq$ Find (w) to determine if (v, w) joins separate components
- Do Union(v, w) to merge sets

Application: Clustering

- Given a collection of points in an rdimensional space and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(S_{1}, S_{2}\right)=\min \left\{\operatorname{dist}(x, y) \mid x\right.$ in S_{1}, y in $\left.S_{2}\right\}$

Distance Clustering Algorithm

Let $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{n}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|C|>K$
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

Divide into 2 clusters

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence

Finding a minimum branching

Idea for branching algorithm

- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat

Another MST Algorithm

- Choose minimum cost edge into each vertex
- Merge into components
- Repeat until done

