

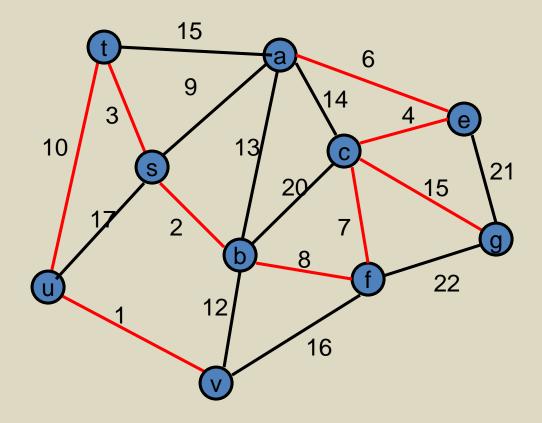
CSE 417 Algorithms and Complexity

Winter 2023 Lecture 13 Minimum Spanning Trees

Announcements

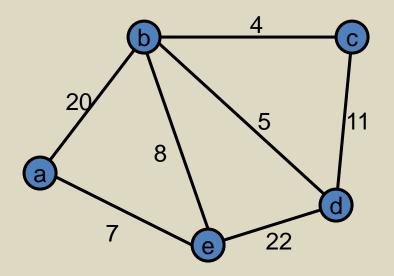
• Midterm, Wednesday, Feb 8

Minimum Spanning Tree



Greedy Algorithms for Minimum Spanning Tree

- Prim's Algorithm: Extend a tree by including the cheapest out going edge
- Kruskal's Algorithm: Add the cheapest edge that joins disjoint components



Greedy Algorithm 1 Prim's Algorithm

 Extend a tree by including the cheapest out going edge

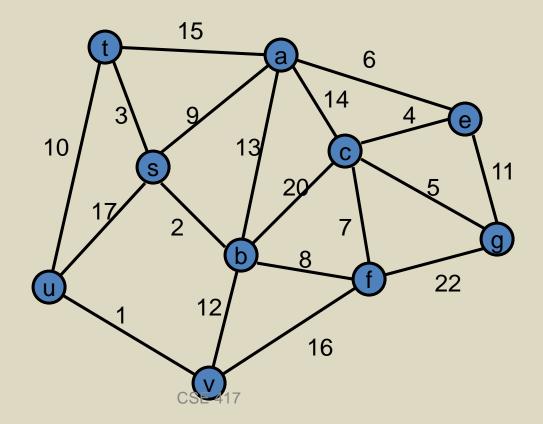
> 15 6 а 14 3 10 С 11 8 22 16

Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order. of insertion

Greedy Algorithm 2 Kruskal's Algorithm

 Add the cheapest edge that joins disjoint components



Construct the MST with Kruskal's algorithm

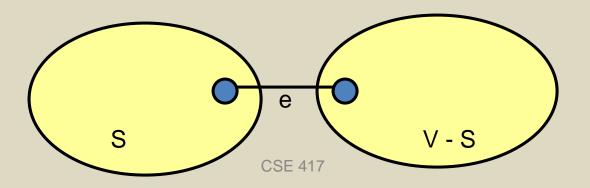
Label the edges in order, of insertion

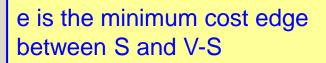
Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

Edge inclusion lemma

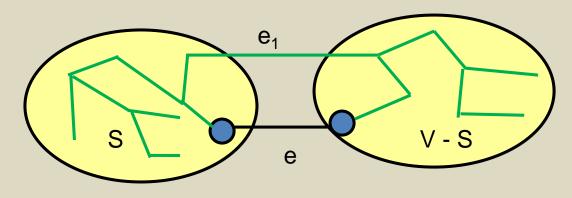
- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree





Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S



- T₁ = T {e₁} + {e} is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

choose the minimum cost edge e = (u,v), with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > 1
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i \cup C_j$ Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

MST Implementation and runtime

- Prim's Algorithm
 - Implementation, runtime: just like Dijkstra's algorithm
 - Use a heap, runtime O(m log n)
- Kruskal's Algorithm
 - Sorting edges by cost: O(m log n)
 - Managing connected components uses the Union-Find data structure
 - Amazing, pointer based data structure
 - Very interesting mathematical result

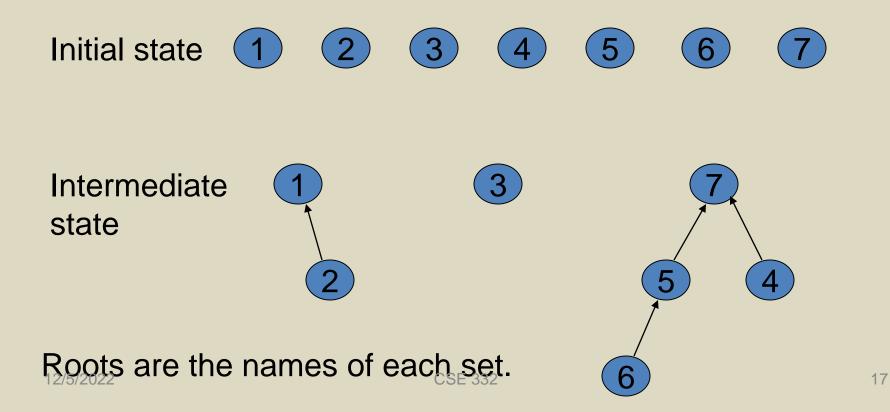
Disjoint Set ADT

- Data: set of pairwise **disjoint sets**.
- Required operations
 - Union merge two sets to create their union
 - Find determine which set an item appears in
- Check Find(v) ≠ Find(w) to determine if (v,w) joins separate components
- Do Union(v,w) to merge sets

Up-Tree for DS Union/Find

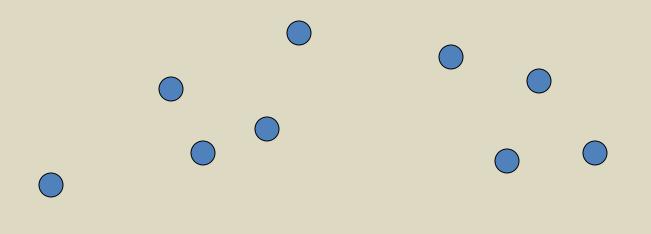
Observation: we will only traverse these trees upward from any given node to find the root.

Idea: *reverse* the pointers (make them point up from child to parent). The result is an **up-tree**.



Application: Clustering

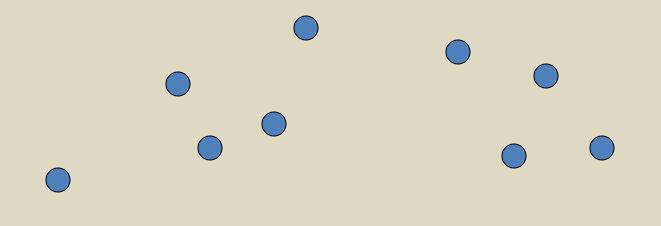
 Given a collection of points in an rdimensional space and an integer K, divide the points into K sets that are closest together



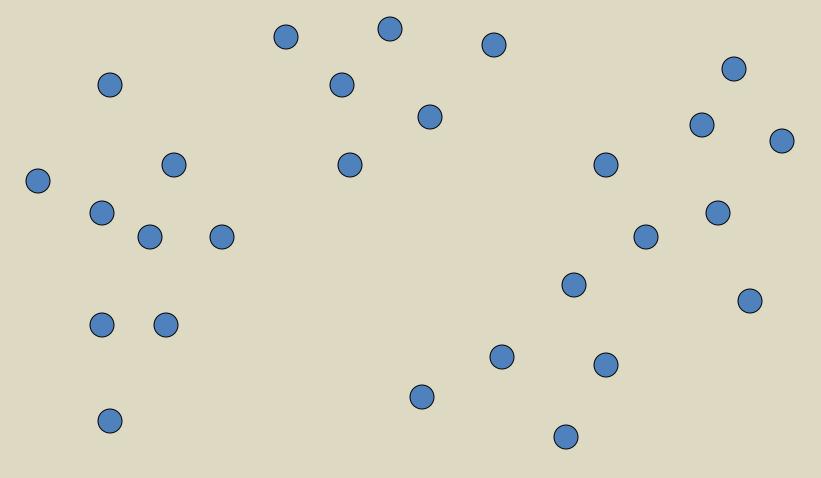
Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

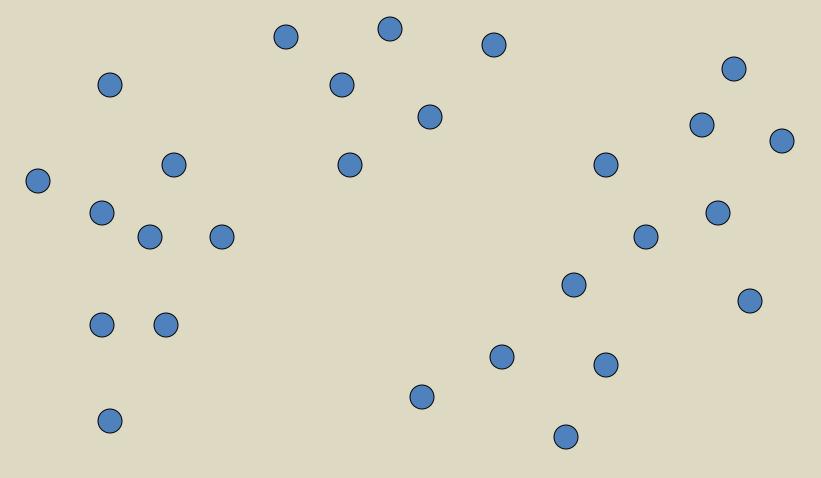
 dist (S₁, S₂) = min {dist(x, y) | x in S₁, y in S₂}



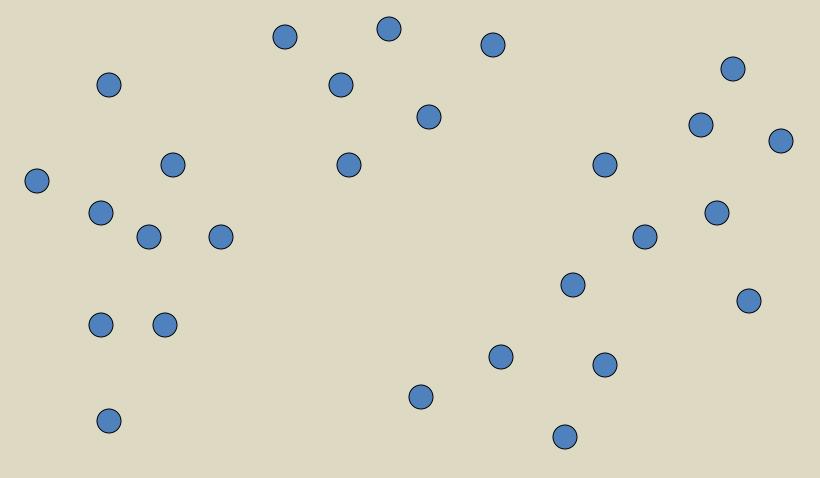
Divide into 2 clusters



Divide into 3 clusters



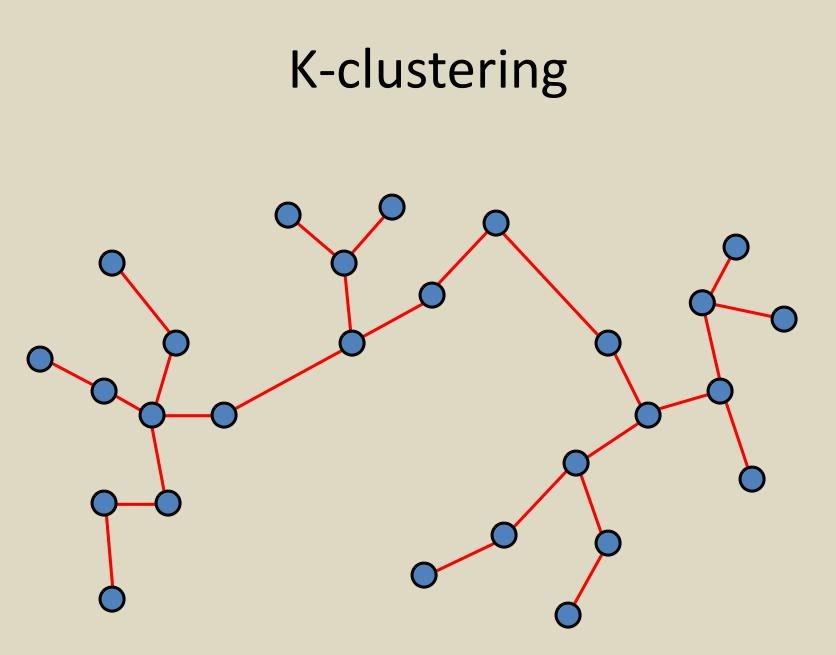
Divide into 4 clusters



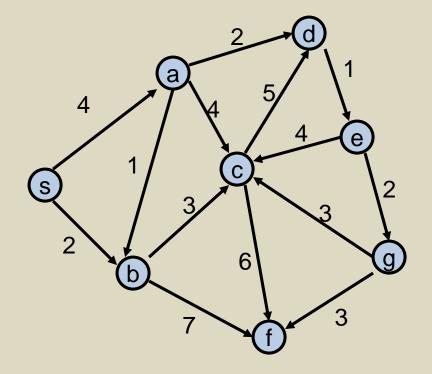
Distance Clustering Algorithm

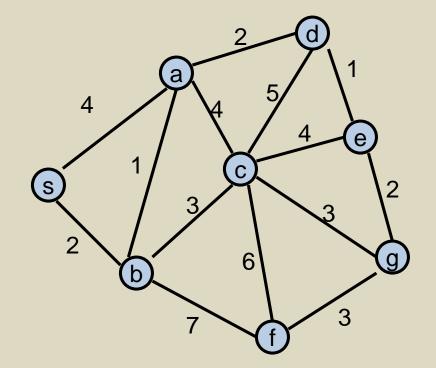
```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > K
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i U C_j$



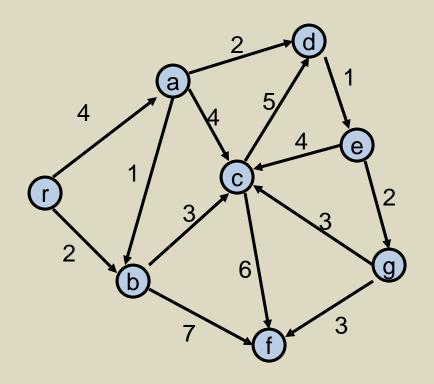
Shortest paths in directed graphs vs undirected graphs



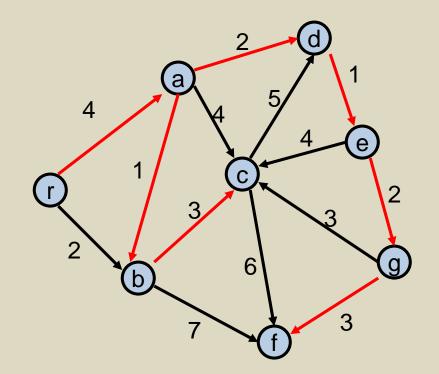


What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

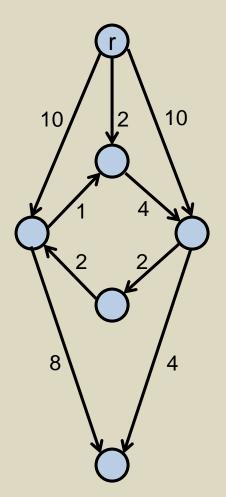


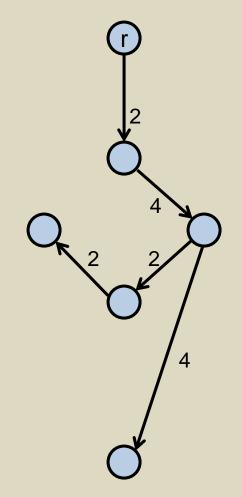
Assume all vertices reachable from r



Also called an arborescence,

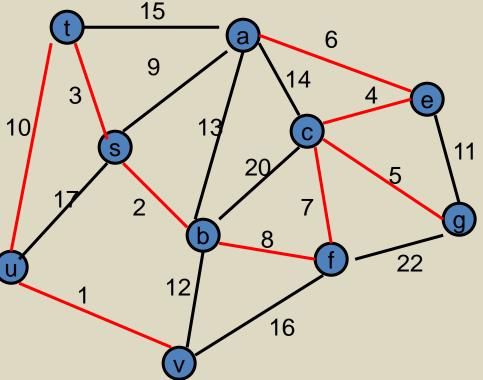
Finding a minimum branching





Another MST Algorithm

- Choose minimum cost edge into each vertex
- Merge into components 10
- Repeat until done



Idea for branching algorithm

- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat

