CSE 417
Algorithms and Complexity

Announcements
* Midterm, Wednesday, Feb 8

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning
Tree

* Prim’s Algorithm:
Extend a tree by
including the cheapest
out going edge

e Kruskal’s Algorithm:
Add the cheapest edge
that joins disjoint
components

Greedy Algorithm 1
Prim’s Algorithm

* Extend a tree by including the cheapest out
going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order.of insertion

Greedy Algorithm 2
Kruskal’s Algorithm

* Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal’s
algorithm

Label the edges in
order.of insertion

Why do the greedy algorithms work?

* For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

e LetS be a subset of V, and suppose e =(u, v) is
the minimum cost edge of E, with uin Sand v

in V-S
e eisin every minimum spanning tree of G

— Or equivalently, if eis not in T, then T is not a
minimum spanning tree

e IS the minimum cost edge
between S and V-S

Proof

e Suppose T is a spanning tree that does not contain e
 Add e to T, this creates a cycle

* The cycle must have some edge e, = (u,, v;) with u, in Sand v,
in V-S

* T,=T-{e,}+{e}is aspanning tree with lower cost
* Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
e Kruskal’s Algorithm computes a MST

 Show that when an edge is added to the MST
by Prim or Kruskal, the edge is the minimum
cost edge between S and V-S for some set S.

Prim’s Algorithm

S={} T={}
while S 1=V

choose the minimum cost edge
e=(uVv),withuinS,andvinV-S

addeto T
addvto S

Prove Prim’s algorithm computes an MST

 Show an edge e is in the MST when it is added
toT

Kruskal’s Algorithm

Let C = {{v,}, {vo}, . . ., {vp}li T={}
while |C| > 1

Lete = (u, v) with uin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C; and C; by C; U C,
Addeto T

Prove Kruskal’s algorithm computes an
MST

 Show an edge e is in the MST when it is added
toT

MST Implementation and runtime

* Prim’s Algorithm
— Implementation, runtime: just like Dijkstra’s
algorithm

— Use a heap, runtime O(m log n)

e Kruskal’s Algorithm
— Sorting edges by cost: O(m log n)
— Managing connected components uses the Union-
Find data structure
* Amazing, pointer based data structure
* Very interesting mathematical result

Disjoint Set ADT

Data: set of pairwise disjoint sets.

Required operations
— Union — merge two sets to create their union
— Find — determine which set an item appears in

Check Find(v) # Find(w) to determine if (v,w) joins
separate components

Do Union(v,w) to merge sets

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

Initial state ‘ ‘ ‘ ‘ ‘ ‘ ‘

ISr;;et;mediate ‘\ ‘ A
@ /0 (4
®

Roots are the names of each set.

Application: Clustering

* Given a collection of points in an r-
dimensional space and an integer K, divide the
points into K sets that are closest together

Distance clustering

* Divide the data set into K subsets to maximize
the distance between any pair of sets

—dist (S4, S,) = min {dist(x, y) | xinS;, yinS,}

2/3/2002

Divide into 2 clusters

CSE 417

20

2/3/2002

Divide into 3 clusters

CSE 417

21

2/3/2002

Divide into 4 clusters

CSE 417

22

Distance Clustering Algorithm

Let C = {{vi}, {Vo},- . o {vidh T={}
while |C| > K

Lete = (u, v) with uin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C; and C; by C; U C,

2/3/2002

K-clustering

CSE 417

24

Shortest paths in directed graphs vs
undirected graphs

What about the minimum spanning
tree of a directed graph?

* Must specify the root r
* Branching: Out tree with root r

Assume all vertices reachable from r Also called an arborescence

Finding a minimum branching

Another MST Algorithm

* Choose minimum cost 1o
edge into each vertex

 Merge into components
* Repeat until done

ldea for branching algorithm

 Select minimum cost
edge going into each r ©
vertex

* If graph is a branching

then done
e Otherwise collapse _—0

cycles and repeat

