2/2/23, 3:37 PM Lecture12

Lecture12

CSE 417
Algorithms and Complexity

Winter 2023
Lecture 12

Shortest Paths Algorithm and Minimum
Spanning Trees

252023 CSE 41T 1

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 1/24



2/2/23, 3:37 PM Lecture12

Announcements
* Reading
—4.4,45,4.7
* Midterm

— Wednesday, February 8
—In class, closed book
— Material through 4.7

— Old midterm questions available
* Note —some listed questions are out of scope

* No homework due on February 10

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html

2/24



2/2/23, 3:37 PM Lecture12

Assume all edges have non-negative cost

Dijkstra’s Algorithm

S={}; d[s]=0: d[v]=infinityforvl=s
While S 1=V
Choose v in V-S with minimum d[v] —_—
Addvto S
For each w inthe neighborhood ofv
d[w] = min(d[w], d[v] + c{v, w))

ScsE 417 3

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 3/24



2/2/23, 3:37 PM Lecture12

Correctness Proof

* Elements in S have the correct label

* Induction: whenvisadded to S, it has the
correct distance label

— Dist(s, v) = d[v] when v added to S

252023 CSE T

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html

4/24



2/2/23, 3:37 PM Lecture12

Hé'd_%’ GCL%h\ @ @

ijkstra Implementation

RS-“J:H{E};S !j[‘j]z TS w\LLZ M [Lf"\._
DI ok Yy

For each winthe neighborhood of v
dlwe] = min{d[w], d[v] +clv, w)
——— e

M ) 3{@,‘%_

* Basic implementation reqﬁres Heap for
tracking the distance values

* Run time O(m logn)

2002023 CSE 417 5

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html

5/24



2/2/23, 3:37 PM Lecture12

O(n?%) Implementation for Dense Graphs

FOR 1 =1 TO n
d[i] := Infinity; wisited[i] := FALSE;
d[s] := 0Q;
FOR k=1 T n
J v 1= —-1; dMin := Infinity;
FOR ] =1 TO n
'3 IF visited[j] = FALSE BAND d[j] < dMin
Qéq e v o= 7; dMin := d[]];
_Qy‘" IF v = -1
EETUEN ;
visited[wv] := TRUE;

— FOR ] =1 TC n

f‘o IF d[v] + len[v, j] < d[j]
:;5 d[j] := d[v] + lenl[v, J1:

prev([]] = v;

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html

6/24



2/2/23, 3:37 PM Lecture12

Future stuff for shortest paths

* Bellman-Ford Algorithm
— O(nm) time
— Handles negative cost edges
* |dentifies negative cost cycle if present
— Dynamic programming algorithm

— Very easy to implement

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 7124



2/2/23, 3:37 PM Lecture12

Bottleneck Shortest Path

* Define the bottleneck distance for a path to be
the maximum cost edge along the path

L—G’T\ .P..f Mux 4 479'\/

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 8/24



2/2/23, 3:37 PM Lecture12

Compute the bottleneck shortest paths

252023 CSE M7 4

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 9/24



2/2/23, 3:37 PM Lecture12

https://courses.cs.washington.edu/courses/cse417/23willectures/Lecture12/Lecture12.html 10/24



2/2/23, 3:37 PM Lecture12

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S ={}; d[s] =negative infinity; d[v] = infinity for v I=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each winthe neighborhood of v
dw] = min(d[w]., max(d[v], c(v, w)))

252023 CSE T 11

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html

11/24



2/2/23, 3:37 PM Lecture12

Minimum Spanning Tree

* Introduce Problem

* Demonstrate three different greedy
algorithms

* Provide proofs that the algorithms work

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 12/24



2/2/23, 3:37 PM Lecture12

Minimum Spanning Tree Definitions

* G=(V,E) isan UNDIRECTED graph
* Weights associated with the edges

* Find a spanning tree of minimum weight

— If not connected, complain

252023 l?/ CSE 417 13

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 13/24



2/2/23, 3:37 PM Lecture12

Minimum Spanning Tree

15
9
10
21
)
22
16
21112023 CSE 417

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html

14

14/24



2/2/23, 3:37 PM Lecture12

Greedy Algorithms for Minimum Spanning
Eran Tree
y/ * Extend a tree by
including the cheapest
out goingl‘eglige &
\/' Add the ¢ ﬁ%&e ge
that joins disjoint
components

* Delete the most
expensive edge that
does not disconnect the
graph

252023 CSE 417 14

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 15/24



2/2/23, 3:37 PM Lecture12

Greedy Algorithm 1 \\?@

Prim’s Algonthm/éy

* Extend a tree by including the cheapest out
going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

16

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 16/24



2/2/23, 3:37 PM Lecture12

Greedy Algorithm 2
Kruskal’s Algorithm

* Add the cheapest edge that joins disjoint
components

Constructthe MST
with Kruskal's
algorithm

Label the edges in
order of insertion

17

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 17/24



2/2/23, 3:37 PM Lecture12

Greedy Algorithm 3
Reverse-Delete Algorithm

* Delete the most expensive edge that does not
disconnect the graph

Constructthe MST
with the reverse-
delete algorithm

Label the edges in
order of removal

18

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 18/24



2/2/23, 3:37 PM Lecture12

?['w“'/ Dijkstra’s Algorithm
for Minimum Spanning Trees

S={} d[s]=0; d[v]=infinityforvI=s \ A

While S I=V QJ \ N
Choose v in V-S with minimum d[v] \O ES

Addvto S W

For each winthe neighborhood of v
d[w] = min({d[w]. c(v, w)) ‘

252023 CSE T 19

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 19/24



2/2/23, 3:37 PM Lecture12

Minimum Spanning Tree

Undirected Graph
G=(V,E) with edge
15 weights

252023 CSE M7 20

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 20/24



2/2/23, 3:37 PM Lecture12

Greedy Algorithms for Minimum Spanning
Tree

* [Prim] Extend a tree by
including the cheapest out
going edge

* [Kruskal] Add the cheapest
edge that joins disjoint
components

+ [ReverseDelete] Delete the
most expensive edge that
does not disconnect the
graph

252023 CSE 417 21

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 21/24



2/2/23, 3:37 PM Lecture12

Why do the greedy algorithms work?

* For simplicity, assume all edge costs are
distinct

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 22/24



2/2/23, 3:37 PM Lecture12

Edge inclusion lemma

* Let S be asubset of V, and suppose e =(u, v) is
the minimum cost edge of E, withuinSandv

in V-S
* eisin every minimum spanning tree of G

— Or equivalently, ifeisnotin T, then T is not a
minimum spanning tree

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html

23/24



2/2/23, 3:37 PM Lecture12

e is the minimum cost edge
between S and V-S

Proof

* Suppose T is a spanning tree that does not contain e
* AddetoT, this creates a cycle

* The cycle must have some edge e, = (u;, v;) with u; in S and v,
in V-S

* T,=T-{e;t+{e}isaspanning tree with lower cost
* Hence, T is not a minimum spanning tree

252023 CSE T 24

https://courses.cs.washington.edu/courses/cse417/23wi/lectures/Lecture12/Lecture12.html 24/24



