#### Lecture12





# CSE 417 Algorithms and Complexity

Winter 2023
Lecture 12
Shortest Paths Algorithm and Minimum
Spanning Trees

2/1/2023 CSE 417

#### **Announcements**

- Reading
  - -4.4, 4.5, 4.7
- Midterm
  - Wednesday, February 8
  - In class, closed book
  - Material through 4.7
  - Old midterm questions available
    - Note some listed questions are out of scope
- No homework due on February 10

#### Assume all edges have non-negative cost

Dijkstra's Algorithm

 $S = \{ \}; d[s] = 0; d[v] = infinity for v != s$ While S != V

Choose ∨ in V-S with minimum d[v] ←

Add ∨ to S

For each  $\,w$  in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))



## **Correctness Proof**

- · Elements in S have the correct label
- Induction: when v is added to S, it has the correct distance label
  - Dist(s, v) = d[v] when v added to S



Heap - O(lagn) (5) (0-5)
Dijkstra Implementation

 $S = \{ \}; d[s] = 0; d[v] = infinity for v = s$ While S = V

Choose v in ∨-S with minimum d[v] ←

Add v to S

For each win the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

dor Uplate Kay

 Basic implementation requires Heap for tracking the distance values

• Run time O(m log n)

2/1/2023 CSE 417

## O(n<sup>2</sup>) Implementation for Dense Graphs

```
FOR i := 1 TO n
        d[i] := Infinity; visited[i] := FALSE;
 d[s] := 0;
 FOR /17:= 1 TO n
        v := -1; dMin := Infinity;
        FOR j := 1 TO n
               IF visited[j] = FALSE AND d[j] < dMin</pre>
                      v := j; dMin := d[j];
        IF v = -1
               RETURN;
        visited[v] := TRUE;
        FOR j := 1 TO n
               IF d[v] + len[v, j] < d[j]
                      d[j] := d[v] + len[v, j];
                      prev[i] := v;
2/1/2023
                             CSE 417
```

# Future stuff for shortest paths

- Bellman-Ford Algorithm
  - O(nm) time
  - Handles negative cost edges
    - · Identifies negative cost cycle if present
  - Dynamic programming algorithm
  - Very easy to implement

2/1/2023 CSE 417

## **Bottleneck Shortest Path**

 Define the bottleneck distance for a path to be the maximum cost edge along the path

Len P = mex edge cost



# Compute the bottleneck shortest paths Compute the bottleneck shortest paths CSE 417 SOURCE SOURCE

# How do you adapt Dijkstra's algorithm to handle bottleneck distances

Does the correctness proof still apply?

# Dijkstra's Algorithm for Bottleneck Shortest Paths

 $S = \{\}; d[s] = negative infinity; d[v] = infinity for v != s$ 

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each win the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))



# Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

## Minimum Spanning Tree Definitions

- G=(V,E) is an UNDIRECTED graph
- Weights associated with the edges
- · Find a spanning tree of minimum weight
  - If not connected, complain

2/1/2023



# Minimum Spanning Tree



# Greedy Algorithms for Minimum Spanning Tree

Pran

Extend a tree by including the cheapest out going edge

 Add the cheapest edge that joins disjoint components

 Delete the most expensive edge that does not disconnect the graph



# Greedy Algorithm 1 Prim's Algorithm

 Extend a tree by including the cheapest out going edge

Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order of insertion



# Greedy Algorithm 2 Kruskal's Algorithm

Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm

Label the edges in order of insertion



# Greedy Algorithm 3 Reverse-Delete Algorithm

 Delete the most expensive edge that does not disconnect the graph



Construct the MST with the reverse-delete algorithm

Label the edges in order of removal



# Dijkstra's Algorithm for Minimum Spanning Trees

 $S = \{\}; d[s] = 0; d[v] = infinity for v != s$ 

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))



19

Runtin

# Minimum Spanning Tree



# Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph



# Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

## Edge inclusion lemma

- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
  - Or equivalently, if e is not in T, then T is not a minimum spanning tree



2/1/2023

e is the minimum cost edge between S and V-S

## Proof

- · Suppose T is a spanning tree that does not contain e
- · Add e to T, this creates a cycle
- The cycle must have some edge e<sub>1</sub> = (u<sub>1</sub>, v<sub>1</sub>) with u<sub>1</sub> in S and v<sub>1</sub> in V-S



- $T_1 = T \{e_1\} + \{e\}$  is a spanning tree with lower cost
- · Hence, T is not a minimum spanning tree