CSE 417
Algorithms and Complexity

Upcoming lectures

* Topics

— Dijkstra’s Algorithm (Section 4.4)

— Wednesday: Minimum Spanning Trees
* Reading

—4.4,45,4.7,4.8

Single Source Shortest Path Problem

* Given a graphanda startvertex s
— Determine distance of every vertex from s
— Identify shortest paths to each vertex
* Express concisely as a “shortest paths tree”

* Each vertex has a pointer to a predecessor on shortest
path

Construct Shortest Path Tree
froms

Warmup
* IfPisashortest pathfrom stov, andift ison

the path P, the segment fromstotisa
shortest path between sand t

* WHY?

Assume all edges have non-negative cost

Dijkstra’s Algorithm

S={} d[s]=0; d[v]=infinity forv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v

d[w] = min(d[w], d[v]+c(v, w))

Simulate Dijkstra’s algorithm
(starting froms) on the graph

Vertex
R s a b ¢ d
ound) dded

v s | W N |-

Who was Dijkstra?

* What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

Edsger Wybe Dijkstra was one of the most influential
members of computing science's founding
generation. Among the domains in which his
scientific contributions are fundamental are
— algorithm design

— programming languages

— program design

— operating systems

— distributed processing

— formal specification and verification

— design of mathematical arguments

Dijkstra’s Algorithm as a greedy algorithm

* Elements committed to the solution by order
of minimum distance

Correctness Proof

* Elements inS have the correct label

* Key to proof: when visadded toS, ithas the
correctdistancelabel.

)
®

Proof

* Letv be avertexinV-S with minimum d[v]

* LetP, be a path of length d[v], with an edge (u,v)

* LetP be some other pathto v. Suppose P firstleaves
S on the edge (x, y)

— P=Psx+c(xy) + Py ©,
— Len(Psy) + c(x,y) >= dly] ®
— Len(Py) >=0

— Len(P) >=d[y] + 0>=d[v]

Negative Cost Edges

* Drawa small examplea negative costedge

and show that Dijkstra’s algorithmfails on this
example

Dijkstra Implementation

S={} d[s]=0; d[v]=infinityforv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v

d[w] = min(d[w], d[v]+c(v, w))

* Basicimplementation requires Heap for
tracking the distancevalues

* Run time O(m logn)

0(n?) Implementation for Dense Graphs

FOR i := 1 TO n
d[i] := Infinity; visited[i] := FALSE;
d[s] := 0;
FOR i := 1 TO n
v := -1; dMin := Infinity;
FOR j := 1 TO n
IF visited[j] = FALSE AND d[j] < dMin
v := j; dMin := d[j];
IF v = -1
RETURN;
visited[v] TRUE;
FOR j := 1 TO n
IF d{v] + len[v, 3] < d[j]
d[j] := dlv] + len[v, j]
prev[(j] := v

Bottleneck Shortest Path

* Define the bottleneck distancefor a path to be
the maximum costedge alongthe path

Compute the bottleneck shortest paths

How do you adaptDijkstra’s algorithm to handle
bottleneck distances

* Does the correctness proofstill apply?

