CSE 417
 Algorithms and Complexity

Winter 2023
Lecture 10 - Greedy Algorithms III

Announcements

- Today's lecture
-Kleinberg-Tardos, 4.3, 4.4
- Monday
-Kleinberg-Tardos, 4.4, 4.5
- Text book has lots of details on some of the proofs that I cover quickly

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.3, 4.4)
- Another homework scheduling task
- Optimal Caching
- Start Dijkstra's shortest paths algorithm

Scheduling Theory

- Tasks
- Execution time, value, release time, deadline
- Processors
- Single processor, multiple processors
- Objective Function - many options, e.g.
- Maximize tasks completed
- Minimize number of processors to complete all tasks
- Minimize the maximum lateness
- Maximize value of tasks completed by deadline

Homework Scheduling

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness: $L_{i}=f_{i}-d_{i}$ if $f_{i} \geq d_{i}$

Result: Earliest Deadline First is Optimal for Min Max Lateness

Time

	Time
	2
a_{1}	2
a_{2}	3

Lateness $\mathrm{A}_{1} \quad$ Lateness A_{2}

$a_{4} \quad 5$

Another version of HW

scheduling

- Assign values to HW units
- Maximize value completed by deadlines
- Simplifying assumptions
- All Homework items take one unit of time
- All items available at time 0
- Each item has an integer deadline
- Each item has a value
- Maximize value of items completed before their deadlines

Example

Task	Value	Deadline
T_{1}	2	2
T_{2}	3	2
T_{3}	4	4
T_{4}	4	4
T_{5}	5	4
T_{6}	2	6
T_{7}	2	6
T_{8}	6	6

Can you get everything done? What do you do first?

Problem transformation

- Convert to an equivalent problem with release times and a uniform deadline
- If D is the latest deadline, set r_{i}^{\prime} as $D-d_{i}$ and d'i as D

Greedy Algorithm

- Starting from $t=0$, schedule the highest value available task
$s=\varnothing$;
for $i=0$ to $D-1$
Add tasks with release time i to S;
Remove highest value task t from S;
Schedule task t at i;

Correctness argument

- Show that the item at $t=0$ is scheduled correctly
- The argument can be repeated for $t=1,2, \ldots$
- Or the argument can be put in the framework of mathematical induction

First item scheduled is correct

- Let t be the task scheduled at $\mathrm{i}=0$, then there exists an optimal schedule with t at $\mathrm{i}=0$
- Suppose $\mathrm{O}=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots\right\}$ is an optimal schedule:
- Case 1: $t=a_{0}$
- Case 2: $\mathrm{t} \notin \mathrm{O}$
- Case 3: $t \neq a_{0}$ and $t \in 0$

Interpretation

- The transformation was done so that we could think about the first item to schedule, as opposed to the last item to schedule
- In the original problem with deadlines, this is asking "what task do I do last"
- So this is a procrastination based approach!

Optimal Caching

- Memory Hierarchy
- Fast Memory (RAM)
- Slow Memory (DISK)
- Move big blocks of data from DISK to RAM for processing
- Caching problem:
- Maintain collection of items in local memory
- Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note - it is rare to know what the requests are in advance - but we still might want to do this:
- Some specific applications, the sequence is known
- Register allocation in code generation
- Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

- Discard element used farthest in the future

$$
A, B, C, A, C, D, C, B, C, A, D
$$

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
- There are some technicalities here to ensure the caches have the same configuration...

Single Source Shortest Path Problem

- Given a graph and a start vertex s
- Determine distance of every vertex from s
- Identify shortest paths to each vertex
- Express concisely as a "shortest paths tree"
- Each vertex has a pointer to a predecessor on shortest path

Construct Shortest Path Tree from s

©
(a)
(+

Warmup

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t
- WHY?

Assume all edges have non-negative cost

Dijkstra's Algorithm

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
$$

Simulate Dijkstra's algorithm (starting from s) on the graph

