

MATT GROENING

Algorithms and Complexity

CSE 417

Winter 2023 Lecture 10 – Greedy Algorithms III

Announcements

- Today's lecture

 Kleinberg-Tardos, 4.3, 4.4
- Monday
 - Kleinberg-Tardos, 4.4, 4.5
- Text book has lots of details on some of the proofs that I cover quickly

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.3, 4.4)
 Another homework scheduling task
 Optimal Caching
- Start Dijkstra's shortest paths algorithm

Scheduling Theory

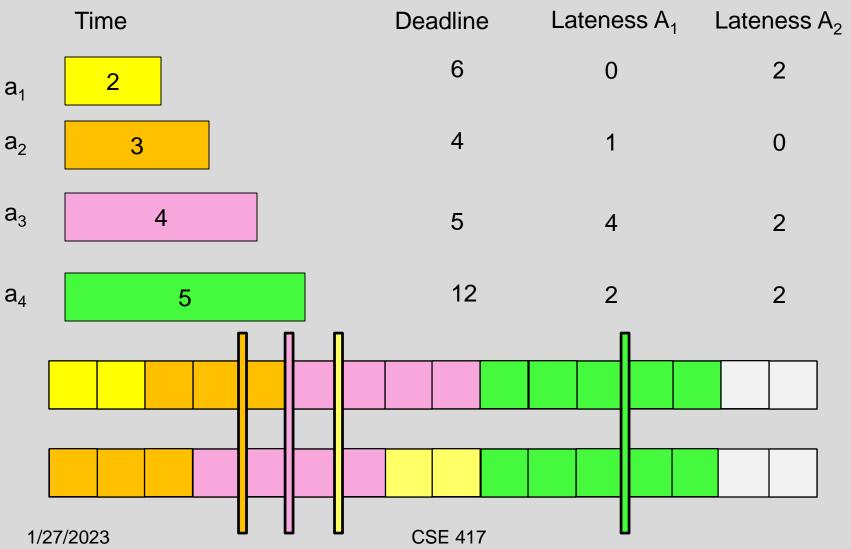
- Tasks
 - Execution time, value, release time, deadline
- Processors
 - Single processor, multiple processors
- Objective Function many options, e.g.
 - Maximize tasks completed
 - Minimize number of processors to complete all tasks
 - Minimize the maximum lateness
 - Maximize value of tasks completed by deadline

Homework Scheduling

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

• Goal minimize maximum lateness – Lateness: $L_i = f_i - d_i$ if $f_i \ge d_i$

Result: Earliest Deadline First is Optimal for Min Max Lateness



Another version of HW scheduling

- Assign values to HW units
- Maximize value completed by deadlines
- Simplifying assumptions
 - All Homework items take one unit of time
 - All items available at time 0
 - Each item has an integer deadline
 - Each item has a value
 - Maximize value of items completed before their deadlines

Example

Task	Value	Deadline		
T ₁	2	2		
T ₂	3	2		
T_3	4	4		
T ₄	4	4		
T ₅	5	4		
T ₆	2	6		
T ₇	2	6		
T ₈	6	6		

Can you get everything done? What do you do first?

Problem transformation

• Convert to an equivalent problem with release times and a uniform deadline

 If D is the latest deadline, set r'_i as D-d_i and d'_i as D

Greedy Algorithm

 Starting from t = 0, schedule the highest value available task

```
S = Ø;
for i = 0 to D - 1
Add tasks with release time i to S;
Remove highest value task t from S;
Schedule task t at i;
```

Correctness argument

- Show that the item at t = 0 is scheduled correctly
 - The argument can be repeated for t=1, 2, . . .
 - Or the argument can be put in the framework of mathematical induction

First item scheduled is correct

- Let t be the task scheduled at i = 0, then there exists an optimal schedule with t at i = 0
- Suppose O={a₀, a₁, a₂, . . . } is an optimal schedule:
 - Case 1: t = a_0
 - Case 2: t \notin O
 - Case 3: $t \neq a_0$ and $t \in 0$

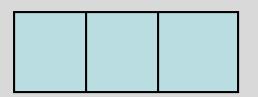
Interpretation

- The transformation was done so that we could think about the first item to schedule, as opposed to the last item to schedule
- In the original problem with deadlines, this is asking "what task do I do last"
 - So this is a procrastination based approach!

Optimal Caching

- Memory Hierarchy
 - Fast Memory (RAM)
 - Slow Memory (DISK)
 - Move big blocks of data from DISK to RAM for processing
- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example



A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

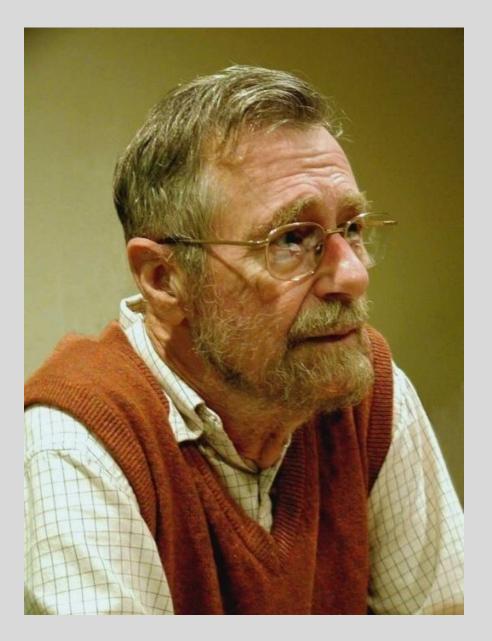
Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

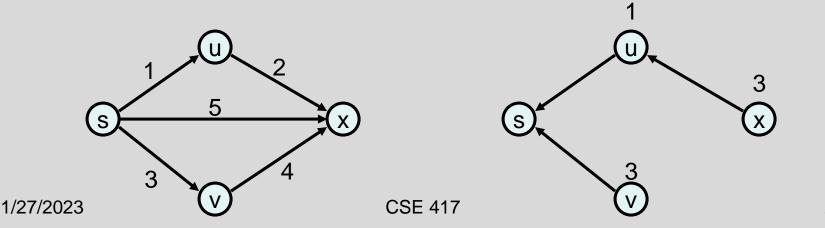
Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

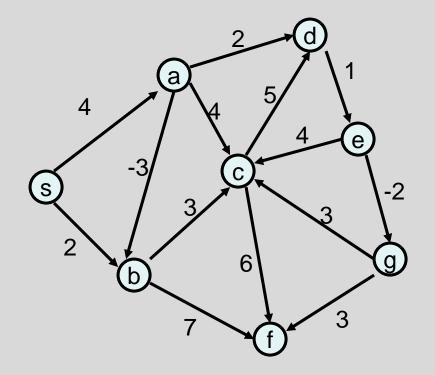


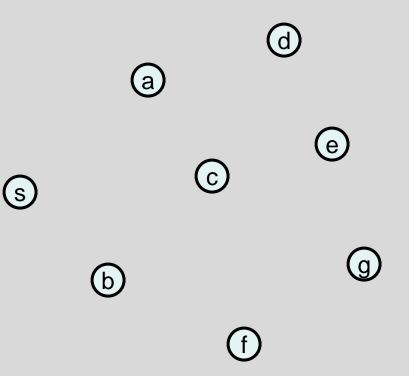
Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path



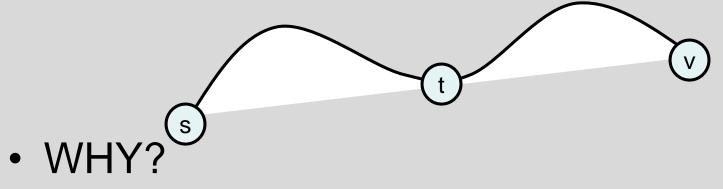
Construct Shortest Path Tree from s





Warmup

 If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t



Assume all edges have non-negative cost

Dijkstra's Algorithm

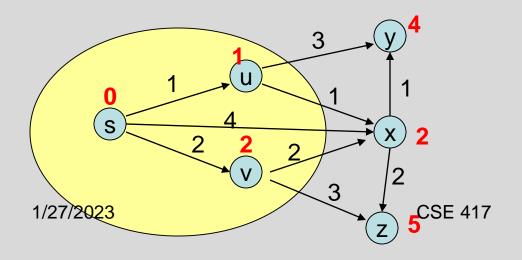
 $S = \{ \}; d[s] = 0; d[v] = infinity for v != s$ While S != V

Choose v in V-S with minimum d[v]

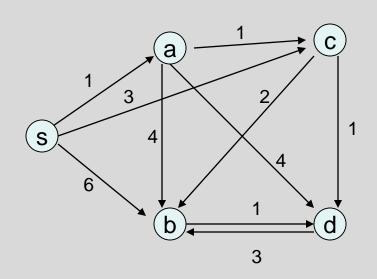
Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))



Simulate Dijkstra's algorithm (starting from s) on the graph



R	ound	Vertex Added	S	а	b	С	d
	1						
	2						
	3						
	4						
	5						