CSE 417
Algorithms and Complexity
Greedy Algorithms
Winter 2023
Lecture 8
cose47
tra20es

Highlight from last lecture: Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

- Tasks
- Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
- Jobs scheduled, lateness, total execution time

Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed

- Tasks $\{1,2, \ldots$. . $\}$
- Start and finish times: s(i), f(i)

[^0]CSE 417

What is the largest solution?

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

I = \{ \}
While (T is not empty)
Select a task trom T by a rule A
Add t to I
Remove t and all tasks incompatible with t from T

Greedy solution based on earliest finishing time
Example 1

Example 3

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let $A=\left\{i_{1}, \ldots, i_{k}\right\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $B=\left\{j_{1}, \ldots, j_{m}\right\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \leq \min (k, m), f\left(i_{r}\right) \leq f\left(j_{r}\right)$

Stay ahead lemma

- A always stays ahead of $B, f\left(i_{r}\right) \leq f\left(j_{r}\right)$
- Induction argument
$-f\left(\mathrm{i}_{1}\right) \leq f\left(\mathrm{j}_{1}\right)$
- If $f\left(\mathrm{i}_{r-1}\right) \leq f\left(\mathrm{l}_{-1}\right)$ then $\mathrm{f}\left(\mathrm{i}_{r}\right) \leq \mathrm{f}\left(\mathrm{j}_{\mathrm{r}}\right)$

Completing the proof

- Let $\mathrm{A}=\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{k}\right\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $\mathrm{O}=\left\{j_{1}, \ldots, \mathrm{j}_{m}\right\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times
- If k < m , then the Earliest Finish Algorithm stopped before it ran out of tasks

Scheduling all intervals

- Minimize number of processors to schedule all intervals

Prove that you cannot schedule this set of intervals with two processors

16

Depth: maximum number of intervals active

Greedy Graph Coloring

Theorem: An undirected graph with maximum

 degree K can be colored with $K+1$ colors
Coloring Algorithm, Version 1

```
Let k be the largest vertex degree
Choose k+1 colors
for each vertex v
    Color[v] = uncolored
for each vertex v
    Let c be a color not used in N[v]
    Color[v] = c
3/2023
```


Coloring Algorithm, Version 2

```
for each vertex v
    Color[v] = uncolored
for each vertex v
    Let c be the smallest color not used in N[v]
    Color[v] = c
```


Example

\square

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness $=\mathrm{f}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}}$ if $\mathrm{f}_{\mathrm{i}} \geq \mathrm{d}_{\mathrm{i}}$

Determine the minimum lateness

Deadline
6

4

5

12
\square

[^0]: 1/23/2023

