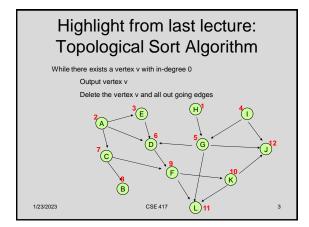


Announcements Reading For today, sections 4.1, 4.2, For next week sections 4.4, 4.5, 4.7, 4.8 Homework 3 is available Random Graphs



Greedy Algorithms Solve problems with the simplest possible algorithm The hard part: showing that something simple actually works Pseudo-definition An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- · Precedence constraints
- · Objective function
 - Jobs scheduled, lateness, total execution time

1/23/2023 CSE 417 5

Interval Scheduling

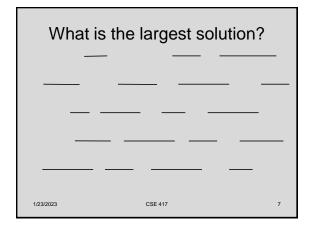
- · Tasks occur at fixed times
- · Single processor
- · Maximize number of tasks completed

• Tasks {1, 2, ... N}

· Start and finish times: s(i), f(i)

1/23/2023 CSE 417

1



Greedy Algorithm for Scheduling Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm I = {} While (T is not empty) Select a task t from T by a rule A Add t to I Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for each of these heuristics
Schedule earliest starting task
Schedule shortest available task

Schedule task with fewest conflicting tasks

Greedy solution based on earliest finishing time
Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let A = {i₁, ..., i_k} be the set of tasks found by EFA in increasing order of finish times
- Let B = {j₁, ..., j_m} be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \le \min(k, m)$, $f(i_r) \le f(j_r)$

1/23/2023 CSE 417 11

Stay ahead lemma

- A always stays ahead of B, f(i_r) ≤ f(j_r)
- Induction argument
 - $-\operatorname{f}(\operatorname{i}_1) \leq \operatorname{f}(\operatorname{j}_1)$
 - If $f(i_{r-1}) \le f(j_{r-1})$ then $f(i_r) \le f(j_r)$

1/23/2023 CSE 417 12

Completing the proof

- Let A = {i₁, ..., i_k} be the set of tasks found by EFA in increasing order of finish times
- Let O = {j₁, ..., j_m} be the set of tasks found by an optimal algorithm in increasing order of finish times
- If k < m, then the Earliest Finish Algorithm stopped before it ran out of tasks

1/23/2023 CSE 417 13

Scheduling all intervals

 Minimize number of processors to schedule all intervals

1/23/2023 CSE 417 14

How many processors are needed for this example?

Prove that you cannot schedule this set of intervals with two processors

1/23/2023 CSE 417 16

Depth: maximum number of intervals active

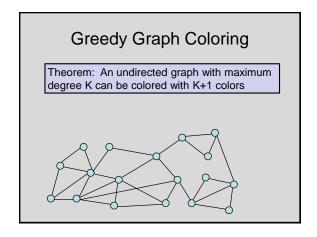
CSE 417

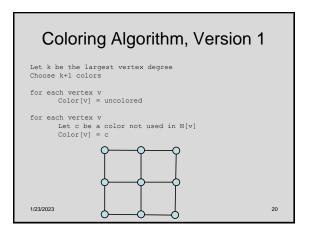
1/23/2023

Algorithm

- · Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

1/23/2023 CSE 417 18





Coloring Algorithm, Version 2 for each vertex v Color[v] = uncolored for each vertex v Let c be the smallest color not used in N[v] Color[v] = c

