

Graph Connectivity

- An undirected graph is connected if there is a path between every pair of vertices x and y
- A connected component is a maximal connected subset of vertices

Connected Components

- Undirected Graphs

Computing Connected Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

- A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x

Strongly Connected

Not Strongly Connected

Testing if a graph is strongly connected

- Pick a vertex x
$-\mathrm{S}_{1}=\{\mathrm{y} \mid$ path from x to y$\}$
$-S_{2}=\{y \mid$ path from y to $x\}$
- If $\left|S_{1}\right|=n$ and $\left|S_{2}\right|=n$ then strongly connected
- Compute S_{2} with a "Backwards BFS"
- Reverse edges and compute a BFS

Strongly Connected Components

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

Strongly connected components can be found in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v 's scc in $O(n+m)$ time
- $S_{1}=\{y \mid$ path from v to $y\}$
- $S_{2}=\{y \mid$ path from y to $v\}$
- Scc containing v is S_{1} Intersect S_{2}

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let (v_{2}, v_{1}) be an edge, if v_{2} has in-degree 0 then done
- If not, let $\left(v_{3}, v_{2}\right)$ be an edge \ldots
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v
Delete the vertex v and all out going edges

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

Model of Random Graphs

- Undirected Graphs
- Random Graph with n vertices and m edges, G_{m}
- Random Graph with n vertices where each edge has probability p, G_{p}
- Models are similar when $p=2 m /\left(n^{*}(n-1)\right)$

$$
\text { for (int } i=0 ; i<n-1 \text {; } i++ \text {) }
$$

for (int $j=i+1 ; j<n ; j++$)
if (random.NextDouble () < p)
AddEdge (i, j) ;

Stable Matching Results

- Averages of 5 runs
- Much better for M than W
- Why is it better for M ?
- What is the growth of m rank and w-rank as a function of n ?

\mathbf{n}	m-rank	w-rank
500	5.10	98.05
500	7.52	66.95
500	8.57	58.18
500	6.32	75.87
500	5.25	90.73
500	6.55	77.95
1000	6.80	146.93
1000	6.50	1154.71
1000	7.14	133.53
1000	7.44	128.96
1000	7.36	137.85
1000	7.04	140.40
2000	7.83	257.79
2000	7.50	263.78
2000	11.42	175.17
2000	7.16	274.76
2000	7.54	261.60
2000	8.29	246.62

1/20/2023
CSE 417

Coupon Collector Problem

- n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- p_{i} is the probability of getting a new coupon after $i-1$ have been collected
- t_{i} is the time to receive the i-th type of coupon after i-1 have been received

$$
p_{i}=\frac{n-(i-1)}{n}=\frac{n-i+1}{n}
$$

t_{i} has geometric distribution with expectation
$\frac{1}{p_{i}}=\frac{n}{n-i+1}$
$\mathrm{E}(T)=\mathrm{E}\left(t_{1}+t_{2}+\cdots+t_{n}\right)$
$=\mathrm{E}\left(t_{1}\right)+\mathrm{E}\left(t_{2}\right)+\cdots+\mathrm{E}\left(t_{n}\right)$
$=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{n}}$

$$
=\frac{n}{n}+\frac{n}{n-1}+\cdots+\frac{n}{1}
$$

$$
=n \cdot\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}\right)
$$

$=n \cdot H_{n}$.
$\underset{\mathrm{CSE}}{\mathrm{ES}(T) 7})_{7}=n \cdot H_{n}=n \log n+\gamma n+\frac{1}{2}+O\left(\frac{1}{2 d} n\right)$

Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w's are matched
- Each proposal can be viewed ${ }^{1}$ as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem

