CSE 417 Algorithms and Complexity

Graph Algorithms Winter 2023 Lecture 7

Graph Connectivity

- An undirected graph is connected if there is a path between every pair of vertices x and y
- A connected component is a maximal connected subset of vertices

CSE 417

Connected Components

Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- · While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

• A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x

Strongly Connected

Testing if a graph is strongly connected

- Pick a vertex x
 - $-S_1 = \{ y \mid path from x to y \}$
 - $-S_2 = \{ y \mid path from y to x \}$
 - $If |S_1| = n \text{ and } |S_2| = n \text{ then strongly connected}$
- Compute S₂ with a "Backwards BFS"
 - Reverse edges and compute a BFS

CSE 417

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time
- S₁ = { y | path from v to y }
- S₂ = { y | path from y to v}
- Scc containing v is S₁ Intersect S₂

20/2023 CSE 417 8

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0
 Proof:

 Pick a vertex v₁, if it has in-degree 0 then done
 If not, let (v₂, v₁) be an edge, if v₂ has in-degree 0 then done
 If not, let (v₃, v₂) be an edge . . .
 If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each

1/20/2023 CSE 417 14

Random Graphs • What is a random graph? • Choose edges at random • Interesting model of certain phenomena • Mathematical study • Useful inputs for graph algorithms

Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w's are matched
- Each proposal can be viewed¹ as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem

There are some technicalities here that are being ignored CSE 417

4