CSE 417
Algorithms and Complexity

1/17/2023

Announcements

* Reading
— Chapter3

— Start on Chapter 4

* Homework 2

— Programming problem: related to analysis of

stable matching

Graph Theory

* G=(VE)
— V: vertices, [V|=n
— E: edges, |E|] =m
* Undirected graphs

— Edges sets of two vertices {u v}

« Directed graphs
— Edges ordered pairs (u, v)
* Many other flavors
— Edge / vertices weights
— Parallel edges
— Self loops

Path: vi, vy, ..., Vi, With (vj, Via)
inE

— Simple Path

— Cycle

— Simple Cycle
Neighborhood

- N(v)

Distance

Connectivity

— Undirected

— Directed (strong connectivity)
Trees

— Rooted

— Unrooted

Graph Representation

a b
3 d
[- L]
o a1
Ben
L G

Adjacency List

O(n +m) space

V={a,b,c,d}

E={fa b}, {a, c} {a d}, {b, d}}

1111
1 0|1
110 0
11110

Incidence Matrix

O(n?) space

Implementation Issues

* Graphwith n vertices, m edges

* Operations
— Lookup edge
— Add edge
— Enumeration edges
— Initialize graph

* Space requirements

Graph search

* Finda path fromstot

S = {s}

while S is not empty

u = Select(S)

visitu

foreach v in N(u)

if v is unvisited
Add(S, v)
Pred[v] =u

if (v == t) then path found

Graph Search

AN

1/17/2023

Breadth first search

* Explore vertices inlayers
—sin layer1
— Neighbors of s inlayer 2
— Neighbors of layer 2 inlayer3. ..

Breadth First Search

* Build a BFS tree from s
Initialize Level[v] = -1 for all v;
Q ={s}
Level[s] =1;
while Q is not empty
u = Q.Dequeue()
foreach v in N(u)
if (Level[v] == -1)
Q.Enqueue(v)
Pred[v] =u

Level[v] = Level[u] +1

Key observation

* All edges go between vertices on the same

layer or adjacentlayers

Bipartite Graphs

* AgraphVis bipartiteifV canbe partitioned
intoV,, V, such that all edges go between V;
andV,;

* Agraphis bipartiteifitcan be two colored

Can this graph be two colored?

1/17/2023

Algorithm

* Run BFS

* Color odd layers red, even layers blue

* Ifno edges between the same layer, the graph
is bipartite

* Ifedge between two vertices of the same
layer, then there is an odd cycle,and the
graphis not bipartite

Theorem: A graph is bipartite if and only if
it has no odd cycles

Lemma 1

* Ifa graphcontains anoddcycle,itis not
bipartite

Lemma 2

* |fa BFS tree has an intra-level edge, then the
graph has anodd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

* Ifa graph has no odd length cycles, then itis
bipartite

Graph Search

* Data structure for next vertex to visit
determines search order

Graph search

Breadth First Search

S = {s}

Depth First Search

S={s}
while S is not empty while S is not empty
u = Dequeue(S) u= Pop(S)

if uis unvisited if uis unvisited

visitu visitu
foreach v in N(u) foreach v in N(u)

Enqueue(S, V) Push(s, v)

1/17/2023

Breadth First Search

* All edges go between vertices on the same
layer or adjacentlayers

Depth First Search

* Eachedge goes between o
vertices on the same
branch

* No cross edges

Connected Components

e Undirected Graphs

o © 'v
Bt

Computing Connected Componentsin
O(n+m) time
* Asearchalgorithmfroma vertex v canfindall

vertices inv’s component

* Whilethere is an unvisited vertex v, search
from v to find a new component

Directed Graphs

* A Strongly Connected Component is a subset
of the vertices with paths between every pair

of vertices.

1/17/2023

Identify the Strongly Connected
Components

o © 'V

.\

Strongly connected components can be
foundin O(n+m) time

e But it’s tricky!
e Simpler problem: given a vertex v, compute the
vertices inVv’s sccin O(n+m) time

Topological Sort

* Given a set of tasks with precedence
constraints, find a linearorder of the tasks

QD — D — @D

.<. N

Find a topological orderfor the following
graph

If a graph has a cycle, thereis no
topological sort

¢ Considerthe first vertex
on the cycle in the
topological sort

* It must have an
incoming edge 9

Definition: Agraphis
Acyclicifithasno cycles

Lemma: If a (finite) graphisacyclic, ithas a
vertex within-degree 0

* Proof:
— Pick a vertex vy, if it has in-degree 0 then done
—If not, let (v,, v4) be an edge, if v, has in-degree 0
then done
—If not, let (v3, v,) be an edge. . .

— If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v

Delete the vertex v and all out going edges

® ®

3 LA
AN
®\ 9

1/17/2023

Details for O(n+m) implementation

Maintain a list of vertices of in-degree 0
Each vertex keeps track of its in-degree

Update in-degrees and listwhen edges are
removed

m edge removals atO(1) costeach

