Lecture05

Graph Theory
CSE 417 Algorithms

Richard Anderson Winter 2023 Lecture 5

Announcements

- HW 1 Due tonight on Gradescope, turn in open until Sunday, 11:59 pm
- · HW 2 Available
- No class on Monday, January 16

Worst Case Runtime Function

- Problem P: Given instance I compute a solution S
- A is an algorithm to solve P
- T(I) is the number of steps executed by A on instance I
- T(n) is the maximum of T(l) for all instances of size n

Ignore constant factors

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight
- Express run time as T(n) = O(f(n))

Formalizing growth rates

- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is Ω(f(n))
 - -T(n) is at least a constant multiple of f(n)
 - -There exists an n_0 , and ε > 0 such that T(n) > εf(n) for all $n > n_0$
- T(n) is Θ(f(n)) if T(n) is O(f(n)) and T(n) is Ω(f(n))

Efficient Algorithms 1

- Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
- Polynomial Time has been a very successful tool for theoretical computer science
- Problems in Polynomial Time often have practical solutions

Examples
Face Book Gyraph = (V, E)
Profiles

Profiles

Or 28

Or 27

Or 20

Or

Currency Conversion Comph

Definitions

Path: $V_1, V_2, ..., V_k$, with (V_i, V_{i+1}) in E – Simple Path

- Cycle
- Simple Cycle

Neighborhood

- N(∨)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

1V1= N | E1= M

Graph Representation

Adjacency List

 $V = \{ a, b, c, d \}$

 $E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$

	1	1	1
1		0	1
1	0		0
1	1	0	

Incidence Matrix

Implementation Issues

- Graph with n vertices, m edges
- Operations
 - Lookup edge
 - Add edge
 - Enumeration edges
 - Initialize graph
- Space requirements