CSE 417 Algorithms

Richard Anderson

Winter 2023
Lecture 5

Worst Case Runtime Function

- Problem P: Given instance I compute a solution S
- A is an algorithm to solve P
- $\mathrm{T}(\mathrm{I})$ is the number of steps executed by A on instance I
- $T(n)$ is the maximum of $T(I)$ for all instances of size n

Formalizing growth rates

- $T(n)$ is $O(f(n))$
$\left[\mathrm{T}: \mathrm{Z}^{+} \rightarrow \mathrm{R}^{+}\right]$
- If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
- Exist $\mathrm{c}, \mathrm{n}_{0}$, such that for $\mathrm{n}>\mathrm{n}_{0}, \mathrm{~T}(\mathrm{n})<\mathrm{cf}(\mathrm{n})$
- $T(n)$ is $\Omega(f(n))$
$-T(n)$ is at least a constant multiple of $f(n)$
- There exists an n_{0}, and $\varepsilon>0$ such that $T(n)>\varepsilon f(n)$ for all $n>n_{0}$
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $\mathrm{T}(\mathrm{n})$ is $\Omega(\mathrm{f}(\mathrm{n}))$

Announcements

- HW 1 Due tonight on Gradescope, turn in open until Sunday, 11:59 pm
- HW 2 Available

Ignore constant factors

- Constant factors are arbitrary
- Depend on the implementation
- Depend on the details of the model
- Determining the constant factors is tedious and provides little insight
- Express run time as $T(n)=O(f(n))$

Graph Theory

- $G=(V, E)$
- V-vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
- Neighborhood
- N(v)
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph Representation

$V=\{a, b, c, d\}$
$E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\}\}$

Adjacency List

Incidence Matrix

Implementation Issues

- Graph with n vertices, m edges
- Operations
- Lookup edge
- Add edge
- Enumeration edges
- Initialize graph
- Space requirements

Graph search

- Find a path from s to t

$$
\begin{aligned}
& S=\{s\} \\
& \text { while } S \text { is not empty } \\
& \qquad \begin{array}{l}
u=\operatorname{Select}(S) \\
\text { visit } u \\
\text { foreach } v \text { in } N(u) \\
\text { if } v \text { is unvisited } \\
\qquad \begin{array}{l}
\operatorname{Add}(S, v) \\
\operatorname{Pred}[v]=u
\end{array} \\
\text { if }(v=t) \text { then path found }
\end{array}
\end{aligned}
$$

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 . . .

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_{1}, V_{2} such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Graph Search

- Data structure for next vertex to visit determines search order

Breadth First Search

- All edges go between vertices on the same layer or adjacent layers

Graph search

Breadth First Search

$$
S=\{s\}
$$

while S is not empty
$\mathrm{u}=$ Dequeue(S)
if u is unvisited
visit u
foreach v in $N(u)$
Enqueue(S, v)

Depth First Search

$S=\{s\}$
while S is not empty
$u=\operatorname{Pop}(S)$
if u is unvisited
visit u
foreach v in $N(u)$
Push(S, v)

- Each edge goes between vertices on the same branch
- No cross edges

Depth First Search

