CSE 417 Algorithms

Richard Anderson
Winter 2023
Lecture 5

Announcements

- HW 1 Due tonight on Gradescope, turn in open until Sunday, 11:59 pm
- HW 2 Available

Worst Case Runtime Function

- Problem P: Given instance I compute a solution S
- A is an algorithm to solve P
- T(I) is the number of steps executed by A on instance I
- T(n) is the maximum of T(I) for all instances of size n

Ignore constant factors

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model

 Determining the constant factors is tedious and provides little insight

Express run time as T(n) = O(f(n))

Formalizing growth rates

- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is $\Omega(f(n))$
 - T(n) is at least a constant multiple of f(n)
 - There exists an n_0 , and $\epsilon > 0$ such that $T(n) > \epsilon f(n)$ for all $n > n_0$
- T(n) is Θ(f(n)) if T(n) is O(f(n)) and
 T(n) is Ω(f(n))

Efficient Algorithms

- Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
- Polynomial Time has been a very successful tool for theoretical computer science
- Problems in Polynomial Time often have practical solutions

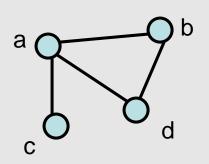
Graph Theory

- G = (V, E)
 - V vertices
 - E edges
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

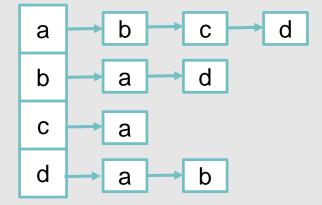
- Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - -N(v)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation



$$V = \{ a, b, c, d \}$$

$$E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$$



	1	1	1
1		0	1
1	0		0
1	1	0	

Adjacency List

Incidence Matrix

Implementation Issues

- Graph with n vertices, m edges
- Operations
 - Lookup edge
 - Add edge
 - Enumeration edges
 - Initialize graph
- Space requirements

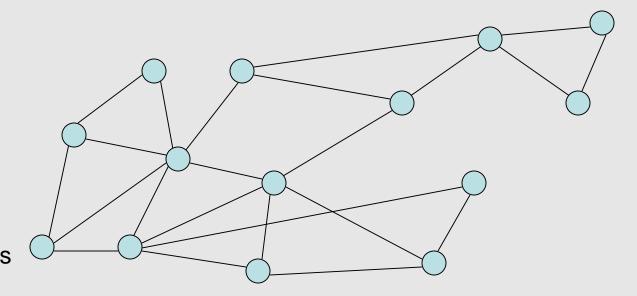
Graph search

Find a path from s to t

```
S = \{s\}
while S is not empty
         u = Select(S)
         visit u
         foreach v in N(u)
                   if v is unvisited
                             Add(S, v)
                             Pred[v] = u
                   if (v = t) then path found
```

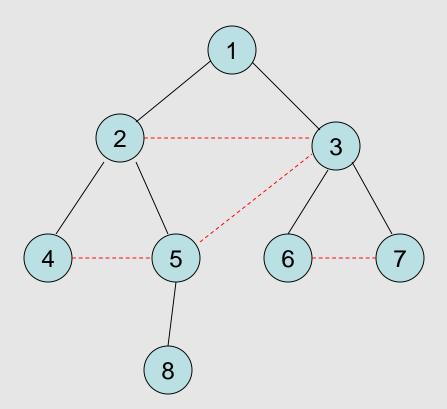
Breadth first search

- Explore vertices in layers
 - -s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .



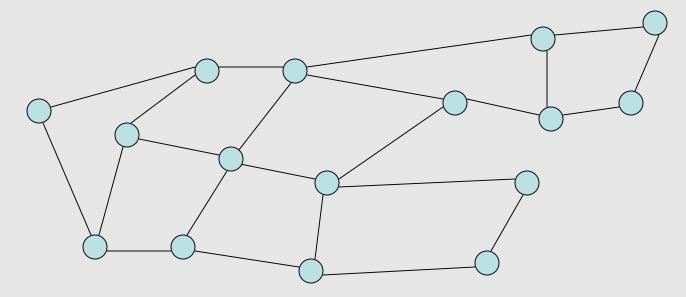
Key observation

 All edges go between vertices on the same layer or adjacent layers

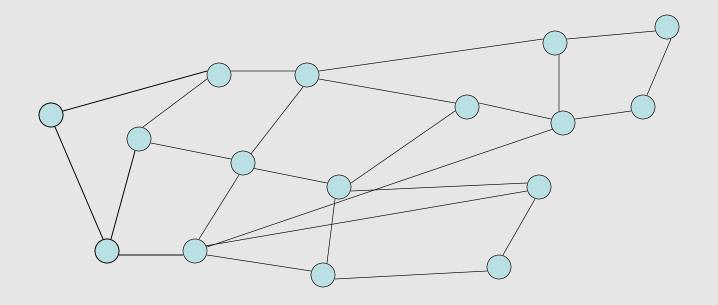


Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V₁, V₂ such that all edges go between V₁ and V₂
- A graph is bipartite if it can be two colored



Can this graph be two colored?



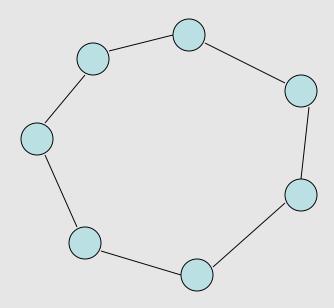
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

 If a graph contains an odd cycle, it is not bipartite



Lemma 2

 If a BFS tree has an intra-level edge, then the graph has an odd length cycle

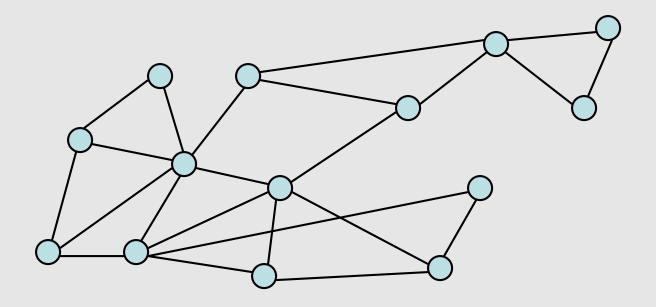
Intra-level edge: both end points are in the same level

Lemma 3

If a graph has no odd length cycles, then it is bipartite

Graph Search

 Data structure for next vertex to visit determines search order



Graph search

```
Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)
```

```
Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

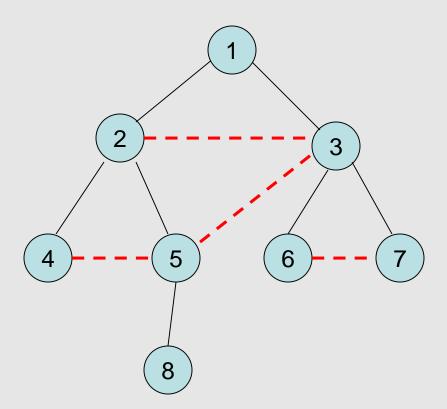
visit u

foreach v in N(u)

Push(S, v)
```

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers



Depth First Search

 Each edge goes between vertices on the same branch

No cross edges

