CSE 417 Algorithms

Richard Anderson
Winter 2023
Lecture 5



Announcements

W 1 Due tonight on Gradescope, turn in
nen until Sunday, 11:59 pm

W 2 Avalilable



Worst Case Runtime Function

Problem P: Given instance | compute a
solution S

A Is an algorithm to solve P

T(l) Is the number of steps executed by A
on instance |

T(n) is the maximum of T(l) for all
Instances of size n



lgnore constant factors

« Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

* Determining the constant factors Is tedious
and provides little insight

* Express run time as T(n) = O(f(n))



Formalizing growth rates

e T(n) is O(f(n)) [T:Z* > RY]
— If n Is sufficiently large, T(n) is bounded by a
constant multiple of f(n)
— EXist ¢, n,, such that for n > n,, T(n) < c f(n)
* T(n)is Q(f(n))
— T(n) Is at least a constant multiple of f(n)

— There exists an ny, and € > 0 such that
T(n) > &f(n) for all n > n,

- T(n) is O(f(n)) if T(n) is O(f(n)) and
T(n) 1s Q(i(n))




Efficient Algorithms

* Polynomial Time (P). Class of all
problems that can be solved with
algorithms that have polynomial runtime
functions

* Polynomial Time has been a very
successful tool for theoretical computer
science

* Problems in Polynomial Time often have
practical solutions



Graph Theory

G = (V, E)
— V — vertices

— E — edges

Undirected graphs

— Edges sets of two vertices {u, v}
Directed graphs

— Edges ordered pairs (u, v)
Many other flavors

— Edge / vertices weights

— Parallel edges
— Self loops



Definitions

Path: v, v,, ..., V,, with (v;, vi,;) IN E
— Simple Path

— Cycle

— Simple Cycle
Neighborhood

— N(V)

Distance

Connectivity

— Undirected

— Directed (strong connectivity)
Trees

— Rooted
— Unrooted



Graph Representation

b V={a,b,c,d}

E=1{{a, b} {a c} {a d}, {b, d} }

. d
b C d 11 1]1
a d 1 0|1
a 1,0 0
a b 11110

Adjacency List Incidence Matrix



Implementation Issues

* Graph with n vertices, m edges
« Operations

— Lookup edge

— Add edge

— Enumeration edges

— Initialize graph
« Space requirements



Graph search

 Find a pathfromstot

S ={s}
while S is not empty
u = Select(S)
visit u
foreach v in N(u)
if v is unvisited
Add(S, v)
Pred[v] = u
if (v =1t) then path found



Breadth first search

* Explore vertices in layers
—sinlayer 1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3 . . .



Key observation

 All edges go between vertices on the
same layer or adjacent layers




Bipartite Graphs

* A graph V is bipartite if V can be

partitioned into V,, V, such that all edges
go between V, and V,

* A graph is bipatrtite if it can be two colored



Can this graph be two colored?



Algorithm

Run BFS

Color odd layers red, even layers blue

If no edges between the same layer, the
graph iIs bipartite

If edge between two vertices of the same

layer, then there Is an odd cycle, and the
graph is not bipartite



Theorem: A graph is bipartite if and
only If it has no odd cycles



Lemma 1

* |If a graph contains an odd cycle, it is not
bipartite



Lemma 2

 If a BFS tree has an intra-level edge, then
the graph has an odd length cycle

Intra-level edge: both end points are in the same level



Lemma 3

* If a graph has no odd length cycles, then it
IS bipartite



Graph Search

 Data structure for next vertex to visit
determines search order




Graph search

Breadth First Search Depth First Search
S = {s} S = {s}
while S is not empty while S is not empty
u = Dequeue(S) u=Pop(S)
if u is unvisited if u is unvisited
visit u visit u
foreach v in N(u) foreach v in N(u)

Enqueue(S, v) Push(S, v)



Breadth First Search

 All edges go between vertices on the
same layer or adjacent layers




Depth First Search
» Each edge goes o @)/
between vertices on the /

| /
same branch g Iy
\ /
» No cross edges (4)




