Lecture04

CSE 417 Algorithms

Richard Anderson Winter 2023 Lecture 4

Announcements

- Reading
 - Chapter 2.1, 2.2
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- · Homework Guidelines
 - Submit homework with Gradescope
 - Describing an algorithm
 - · Clarity is most important
 - · Pseudocode generally preferable to just English
 - But sometimes both methods combined work best
 - Prove that your algorithm works
 - · A proof is a "convincing argument"
 - Give the run time for your algorithm
 - · Justify that the algorithm satisfies the runtime bound
 - You may lose points for style
 - Homework assignments will (probably) be worth the same amount

Five Problems

Scheduling
Weighted Scheduling
Bipartite Matching
Maximum Independent Set
Competitive Facility Location

Summary – Five Problems

cheduling
/eighted Scheduling

- Scheduling
- Weighted Scheduling
- Combinatorial Optimization

What does it mean for an algorithm to be efficient?

Definitions of efficiency

Fast in practice

 Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
 - Run time: count number of instructions executed on an underlying model of computation
 - -T(n): maximum run time for all problems of size at most n

Polynomial Time

 Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

 Generally, polynomial time seems to capture the algorithms which are efficient in practice

• The class of polynomial time algorithms has many good, mathematical properties

- Set polynomial time algorithms

Polynomial vs. Exponential Complexity

Suppose you have an algorithm which takes n! steps on a problem of size n

 If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

Ignoring constant factors

- Express run time as O(f(n))
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

ø

Why ignore constant factors?

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

15/1 7 matrix mult 12.87

Formalizing growth rates

- T(n) is O(f(n)) [T: $Z^+ \rightarrow R^+$]
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is O(f(n)) will be written as:

T(n) = O(f(n)) T(n) = O(f(n))

Be careful with this notation

Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let
$$c = k j$$

Let
$$n_0 = 5$$

T(n) is O(f(n)) if there exist c, n_0 , such that for $n > n_0$,

Order the following functions in increasing order by their growth rate

- a) n log⁴n
- b) 2n2 + 1Qn
- c) $2^{n/100}$
- e) n^{100}
- f) 3ⁿ
- g) 1000 log10n
- h) n^{1/2}

Lower bounds

- T(n) is $\Omega(f(n))$
 - T(n) is at least a constant multiple of f(n)
 - -There exists an n_0 , and ε > 0 such that T(n) > εf(n) for all $n > n_0$
- Warning: definitions of Ω vary
 3η² は 同しこ)

 T(n) is Θ(f(n)) if T(n) is O(f(n)) and T(n) is Ω(f(n))

Useful Theorems

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$
 for $c > 0$ then $f(n) = \Theta(g(n))$

- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))
- If f(n) is O(h(n)) and g(n) is O(h(n)) then
 f(n) + g(n) is O(h(n))

Ordering growth rates

- For b > 1 and x > 0
 - $-\log^b n$ is $O(n^x)$
- For r > 1 and d > 0
 - $-n^d$ is $O(r^n)$