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Announcements

+ Reading
— Chapter 2.1, 2.2
— Chapter 3 (Mostly review)
— Start on Chapter 4
+ Homework Guidelines
— Submit homework with Gradescope
— Describing an algorithm

+ Clarty is most important

+ Pseudocode generally preferable to just English
— But sometimes both methods combined work: hest

— Prove that your algorithm works
+ Aproofisa"convincing argument”

— Give the run time for your algorithm
+ Justify that the algorithm satisfies the muntime bound

— You may lose points for style

— Homework assignments will (probably) be worth the same
amount
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Five Problems

Scheduling
Weighted Scheduling - r::*:g
Bipartite Matching S |
Maximum |Independent Set
Competitive Facility Location
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Summary — Five roblems

Schedulin ’ N@ &

Wei : . a e ?r‘?”]rw )
ghted Scheduling

Combinatorial Optimization

Maximum Independent Set — T\H?

Competitive Scheduling ~ gg?o\{; Y
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What does it mean for an algorithm

to be efficient?
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Definitions of efficiency

» Fast in practice

« Qualitatively better worst case
performance than a brute force algorithm
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Polynomial time efficiency

« An algorithm is efficient if it has a
polynomial run tiné

+ Run time as & function of problem siz

— Run time: count number of Instructions
executed on an underlying model of
computation

— T(n): maximum run time for all problems of

sizeat mostn ~— Q& V@fw
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Polynomial Time

 Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor
(depending on the algorithm)
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Why Polynomial Time?

* Generally, polynomial time seems to
capture the algorithms which are efficient
In practice

* The class of polynomial time algorithms
has many good, matheTatical properties

o spt  polypomar>
> LuY
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Polynomial vs. Exponential

z Complexity

« Suppose you have an algorithm which ta@
steps on a problem of size n

* If the algorithm takes one second for a problem

of size 10, _sestimate the run time for the following
problems sizes:

12 ..14 16 18 20
Lo pvs Zeg 50y 20ty
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lgnoring constant factors

*

Express run time as O(f(n))

Emphasize algorithms with slower growth
rates

Fundamental idea in the study of
algorithms

Basis of Tarjan/Hopcroft Turing Award

*

*

*
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Why ignore constant factors?

« Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

« Determining the constant factors is tedious
and provides little insight
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Why emphasize growth rates?

» The algorithm with the lower growth rate

will be faster for all but a finite number of “”JT‘ /S
cases L

« Performance is most important for larger % :
problem size AN

« As memory prices continue to fall, bigger o mk]b
problem sizes become feasible ;

» Improving growth rate often requires new
techniques
_qz,%’?’
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Formalizing growth rates

+ T(n) is O(f(n)) T:Z" > R*]

— If n Is sufficiently large, T(n) Is bounded by a
constant multiple of f(n)

— Exist ¢, ng, such that for n > ng, T(n) < c¢ f(n)

* T(n) i1s O(f(n)) will be written as:

T(n) = O(f(n)) T h} < O[ g [ ‘“))

— Be careful with this notation
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Prove 3n? + 5n + 20 is O(n?)

p
Letc =5
Let ny = ;

nY 5

208+ §n 720 U Sn- *gﬂi%ﬂz’
=5~

T(n) is O(f(n)) if there exist c, ng, such that for n > ng,
T(n) < c f(n)
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Order the following functions in
Increasing order by their growth rate
a) nlog*n

2n2 +16q

2n/100

)
)
) 10H0n +UDgen.
)

o O T

n100

D

3”
159900 log'°n

) n1/2

J Q =
S
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Lower bounds

« T(n) is Q(f(n))
—T(n) Is at least a constant multiple of f(n)
— There exists an ny, and £ > 0 such that

T(n) > f(n) for all n > ng
« \WWarning: definitions of Q2 Vary
-
s EL%)
* T(n) is O(f(n)) if T(n) is O )) and
T(n) is €(f(n))
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Useful Theorems

If lim fn )—cforc>0then

n—oo g(n

f(n) = ©(g(n))

« Iff(n)is O(g(n)) and g(n) is O(h(n)) then
f(n) is O(h(n))

« Iff(n)is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))
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Ordering growth rates

 Forb>1and x>0
—logPn is O(nX)

e Forr>1andd>0
—ndis O(r
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