Lecture03

Five Problems

CSE 417
Richard Anderson
Winter 2023, Lecture 3

Announcements

Course website:

courses.cs.washington.edu/courses/cse417/23wi/

- Homework Due Friday
- Office Hours:

Richard Anderson, Tuesday, 2:30-3:30 PM, Thursday, 4:00-5:00 PM
Nickolay Perezhogin, Thursday, 10:00 AM - 12:00 PM
Artin Tajdini, Wednesday, 2:30 PM - 4:30 PM
Tom Zhaoyang Tian, Wednesday, 12:30 PM - 1:30 PM Friday, 4:30 PM - 5:30 PM
Michael Wen, Monday, 11:30 AM - 12:30 PM Thursday, 1:30 PM - 2:30 PM
Albert Weng, Tuesday, 10:30 AM - 11:30 AM Friday, 9:30 AM - 10:30 AM
Yilin Zhang, Monday, 3:30 PM - 5:30 PM

Theory of Algorithms

- What is expertise?
- How do experts differ from novices?

Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Facility Location

What is a problem?

Gruph

- · Solution set & Edge
- · Constraints on solution
- Measure of value

 \[
 \langle \frac{1}{2} \frac{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \f

Problem: Scheduling

- Suppose that you own a banquet hall
- You have a series of requests for use of the hall: (s₁, f₁), (s₂, f₂), . . .

 Find a set of requests as large as possible with no overlap

What is the largest solution? shortest

Greedz

Algorithm

Facly finish fine

Cirst

Greedy Algorithm

- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works

Suppose we add values?

- (s_i, f_i, v_i), start time, finish time, payment
- · Maximize value of elements in the solution

Greedy Algorithms

· Earliest finish time

· Maximum value

 Give counter examples to show these algorithms don't find the maximum value solution

Dynamic Programming

- Requests R₁, R₂, R₃, . . .
- Assume requests are in increasing order of finish time (f₁ < f₂ < f₃ . . .)
- Opt_i is the maximum value solution of {R₁, R₂, . . . , R_i} containing R_i
- Opt_i = Max{ j | f_i < s_i}[Opt_i + v_i]

Matching (Combinatorial Optimization)

- Given a bipartite graph G=(U,V,E), find a subset of the edges M of maximum size with no common endpoints.
- · Application:
 - U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v

Find a maximum matching

Augmenting Path Algorithm

Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem

Maximum Independent Set

- Given an undirected graph G=(V,E), find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Find a Maximum Independent Set

Verification: Prove the graph has an independent set of size 8

NP- coupldens Key characteristic

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring

NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- Very elegant theory

Are there even harder problems?

- Simple game:
 - Players alternate selecting nodes in a graph
 - · Score points associated with node
 - · Remove nodes neighbors
 - When neither can move, player with most points wins

Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- Competitive
 - Different companies place facilities
 - · E.g., KFC and McDonald's

Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - · Player 1 wins by at least 10 points

Summary

- Scheduling
- Weighted Scheduling
- · Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling