CSE 417 Algorithms and Computational Complexity

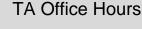
Richard Anderson Winter 2023 Lecture 2

Announcements

- Course website - https://courses.cs.washington.edu/courses/cse417/23wi/
- · Homework due Fridays - HW 1, Due Friday, January 13, 11:59 pm
 - Submit solutions via gradescope
- Class discussion through edstem discussion board

Course Mechanics

- Homework
 - Due Fridays
 - About 5 problems, sometimes programming - Programming - your choice of language
 - Target: 1 week turnaround on grading
- Exams In class
- MT Wednesday, February 8
 Final Monday, March 13
- Approximate grade weighting
- HW: 50, MT: 15, Final: 35
- Course web
- Slides, Handouts
- Instructor Office hours (CSE2 344) Thurs



- Nickolay Perezhogin, Office hours: Thursday, 10:00 AM 12:00 PM (noon) (CSE1 5th Floor Breakout)
- Artin Taidini. Office hours: Wednesday, 2:30 PM - 4:30 PM (CSE1 220)
- Tom Zhaoyang Tian, Office hours: Wednesday, 12:30 PM - 1:30 PM (CSE2 150); Friday, 4:30 PM - 5:30 PM (CSE2 150)
- Michael Wen Office hours: Monday, 11:30 AM - 12:30 PM (CSE2 153); Thursday, 1:30 PM - 2:30 PM (CSE2 153)
- Albert Weng, Office hours: Tuesday, 10:30 AM - 11:30 AM (CSE2 153); Friday, 9:30 AM - 10:30 AM (CSE2 153)
- Yilin Zhang, Office hours: Monday, 3:30 PM 5:30 PM (CSE2 150)

Stable Matching: Formal Problem

- Input
 - Preference lists for m₁, m₂, ..., m_n
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property (e.g., no instabilities) :

For all m', m", w', w'

If $(m', w') \in M$ and $(m'', w'') \in M$ then (m' prefers w' to w") or (w" prefers m" to m')

Idea for an Algorithm

m proposes to w

- If w is unmatched, w accepts
- If w is matched to m₂
 - If w prefers m to m₂, w accepts m, dumping m₂ If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm Example Initially all m in M and w in W are free _____W₁ m₁: w₁ w₂ w₃ m_{1} While there is a free m m₂: w₁ w₃ w₂ w highest on m's list that m has not proposed to if w is free, then match (m, w) m₃: w₁ w₂ w₃ else suppose (m₂, w) is matched $m_2 \bigcirc$ $\bigcirc W_2$ if w prefers m to m₂ w₁: m₂ m₃ m₁ unmatch (m₂, w) w₂: m₃ m₁ m₂ match (m, w) w₃: m₃ m₁ m₂ m_3 $b W_3$ Order: m1, m2, m3, m1, m3, m1

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching

The resulting matching is stable

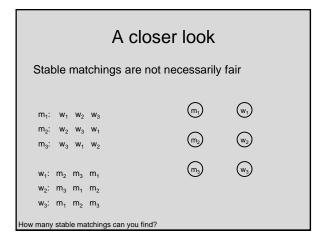
Suppose

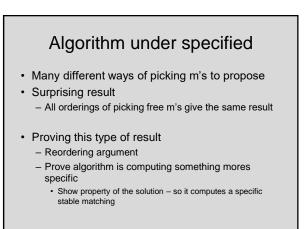
 $\begin{array}{l} (m_1,\,w_1)\,\in\,M,\,(m_2,\,w_2)\,\in\,M\\ m_1 \text{ prefers }w_2 \text{ to }w_1 \end{array}$

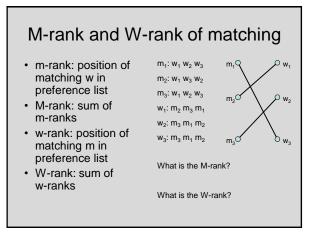
How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 A stable matching always exists







Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

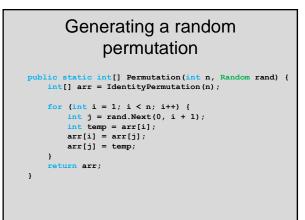
...

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Algorithms

- M Proposal Algorithm

 Iterate over all m's until all are matched
- W Proposal Algorithm
 - Change the role of m's and w's
 - Iterate over all w's until all are matched



What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n² times w highest on m's list that m has not proposed to if w is free, then match (m, w) else

> suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution