CSE 417 Algorithms and Computational Complexity

Richard Anderson
Winter 2023
Lecture 1

CSE 417 Course Introduction

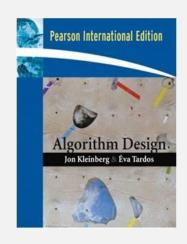
- CSE 417, Algorithms and Computational Complexity
 - MWF 10:30-11:20 AM
 - CSE2 G10
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - Office hours: TBD
- Teaching Assistants
 - Nickolay Perezhogin, Artin Tajdini, Tom Zhaoyang Tian,
 Michael Wen, Albert Weng, Yilin Zhang

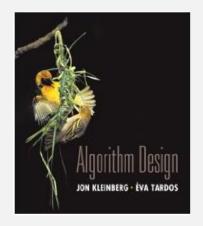
Announcements

- It's on the course website
- Homework weekly
 - Usually due Fridays
 - HW 1, Due Friday, January 13.
 - It's on the website (or will be soon)
- Homework is to be submitted electronically
 - Due at 11:59 pm, Fridays. Five late days.
- You should be on the course mailing list
 - But it will probably go to your uw.edu account

Textbook

- Algorithm Design
- Jon Kleinberg, Eva Tardos
 - Only one edition
- Read Chapters 1 & 2
- Expected coverage:
 - Chapter 1 through 7
- Book available at:
 - UW Bookstore (\$191.00/\$74.99)
 - Ebay (\$16.87 to \$582.30)
 - Amazon (\$154.66/\$33.28)
 - Electronic (\$74.99)
 - PDF





Course Mechanics

- Homework
 - Due Fridays
 - Mix of written problems and programming
 - Target: 1-week turnaround on grading
- Exams
 - Midterm, Tentatively, Wednesday, February 8
 - Final, Monday, March 13, 8:38-10:20 AM
 - Approximate grade weighting:
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts, Discussion Board
- Canvas
 - Panopto videos

All of Computer Science is the Study of Algorithms

How to study algorithms

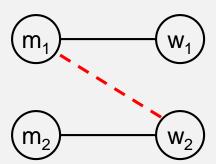
- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking
- Algorithm practice

Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability



Example (1 of 3)

m₁: w₁ w₂

 m_1

 \bigcirc W₁

m₂: w₂ w₁

 $w_1: m_1 m_2$

w₂: m₂ m₁

 m_2

 \bigcirc W₂

Example (2 of 3)

 $m_1: W_1 W_2$

 m_1

 $\bigcirc W_1$

m₂: w₁ w₂

w₁: m₁ m₂

w₂: m₁ m₂

 m_2

 \bigcirc W₂

Example (3 of 3)

 $m_1: W_1 W_2$

 m_1

 $\bigcirc W_1$

m₂: w₂ w₁

w₁: m₂ m₁

w₂: m₁ m₂

 m_2

 \bigcirc W₂

Formal Problem

- Input
 - Preference lists for m₁, m₂, ..., m_n
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property:

```
If (m', w') \in M and (m'', w'') \in M then (m') prefers w' to w'') or (w'') prefers m'' to m')
```

Idea for an Algorithm

```
m proposes to w

If w is unmatched, w accepts

If w is matched to m_2

If w prefers m to m_2 w accepts m, dumping m_2

If w prefers m_2 to m, w rejects m
```

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

```
Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m<sub>2</sub>, w) is matched
if w prefers m to m<sub>2</sub>
unmatch (m<sub>2</sub>, w)
match (m, w)
```

Example

 $m_1: w_1 w_2 w_3$

 m_1

 $\bigcirc W_1$

m₂: w₁ w₃ w₂

m₃: w₁ w₂ w₃

 m_2

 \bigcirc W₂

w₁: m₂ m₃ m₁

w₂: m₃ m₁ m₂

w₃: m₃ m₁ m₂

 m_3

 \bigcirc W₃

Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

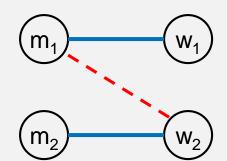
Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m_1 prefers w_2 to w_1



How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists