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CSE 417, Winter 2023

Homework 3, Due Friday, January 27, 11:59 PM, 2023

Turn in instructions: Electronics submission on GradeScope. Submit as a PDF, with each problem
on a separate page. Algorithms should be described in pseudo-code with some of the steps in
English. You can use algorithms described in class such as Breadth First Search and Depth First
Search at a high level, e.g., “Use Breadth First Search to . . .” or “Compute a Depth First Search
Tree” without giving the code for BFS or DFS.

Problem 1 (10 points):

Suppose that an n-vertex undirected graph G = (V,E) has vertices s and t with the distance from
s to t strictly greater than n/2. Show that there must exist some vertex v, not equal to either s
or t, such that deleting v destroys all s − t paths. (This could be phrased as: show that a graph
with diameter strictly greater than n/2 has an articulation point.) Give an algorithm that finds v
in O(n+m) time, you can assume that you are given the vertices s and t that have separation of
greater than n/2.

Problem 2 (10 points):

Give an algorithm to detect whether a given undirected graph contains a cycle. If the graph contains
a cycle, it should output one of the cycles. The algorithm should run in O(n+m) time. You should
explain why your algorithm is correct and achieves O(n+m) run time. Hint: Depth First Search
trees are your friend. Lemma 3.7 from the text is relevant.

Problem 3 (10 points):

Let P = {x1, . . . xn} be points on the X-axis in increasing order, and R be a non-negative integer.
Give an O(n) time algorithm to determine the minimum number of intervals of length R to cover
the points. Explain why your algorithm is correct. (This problem relates to Chapter 4 material on
greedy algorithms, but should be doable before the material has been presented in class.)

Programming Problem 4 (10 points):

The purpose of this problem is to construct a random graph generator for use in other programming
problems and to demonstrate an implementation of graphs using adjacency lists.. A random graph
generator, given an input parameter n, picks “at random” a graph with n vertices. There are
multiple different models of random graphs. We will consider the edge density model, where a
parameter p gives the probability of each edge being present. This model is referred to as Gn

p .
The undirected random graph generation problem is: given an integer n and a real number p with
0 ≤ p ≤ 1, construct an undirected graph on n vertices where each edge {u, v} has probability p of
being in the set of edges E, and the probability of each edge is independent. Write a generator for Gn

p

which given inputs n and p constructs a random undirected graph in adjacency list representation.



For this problem, write the graph generator and a routine to print the edges and vertices of a graph.
Print the results a creating two different random graphs using n = 10 and p = 0.2.

Programming Problem 5 (10 points):

Implement an algorithm for computing the diameter of an undirected graphs. The diameter is
defined to be the maximum distance between a pair of vertices if the graph is connected, and
infinite if the graph is not connected. We define the finite diameter to be the maximum distance
between a pair of vertices that are in the same connected component. Your algorithms should run
in O(mn) time for G = (V,E) with |V | = n, and |E| = m. The algorithm should take as input an
undirected graph, and compute the diameter and finite diameter.

Using the random graph generator from problem 4, experiment with the diameter and finite diam-
eter of random graphs. For a fixed n, look at what happens as you vary the value of p. There are
a couple of different experiments to run, one on dense graphs, the other on sparse graphs.

For dense graphs, what are the values of p that lead to small diameter graphs. Diameter 1 only
occurs with p = 1, since you need all the edges. For a fixed value of n, what is the smallest values
of p where you first get diameter 2 and diameter 3. You should be able to use a value of n of about
1000 for this (but don’t choose a value of n where this takes a long time to generate graphs or
compute the diameter). Instructor update: My testing with n = 1000, p = 0.1 yielded a diameter
of 3.

For sparse graphs, what are the values of p where the diameter becomes finite (i.e., when the graph
becomes connected). What is the value of p that maximizes the finite diameter. You should use a
moderately large value of n, probably about n = 10, 000 (again, do not choose an n so large that it
takes a long time to run the algorithm.) The “interesting” values of p will be small, for example,
with n = 10, 000 the range of interest for p is 0.0002 ≤ p ≤ 0.002. Instructor update: I ran a series
a series of runs for n = 10, 000. Each of them about one minute each. For p = .001, I had one
connected component and diameter 7, for p = 0.0005, 50 components and diameter 11, and for
p = .00025, 909 components and diameter 24.

For this problem, provides graphs on how the quantities vary with different values of p for fixed
values of n. Also, provide a brief discussion of your results.


