

Autumn 2023
Lecture 28
NP-Completeness

Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, December 11, 8:30 AM
- One Hour Fifty Minutes

Fri, Dec 1	Net Flow Applications
Mon, Dec 4	Not Flow Applications + NP Completeness
Wed, Dec 6	NP-Completeness
Fri, Dec 8	NP-Completeness
Mon, Dec 11	Final Exam
12/6/2023	CSE 417

The Universe

- P: Polynomial Time
- NP: Nondeterministic Polynomial Time
- Problems where a "yes" answer can be verified in polynomial time
- NP-Complete
- The hardest problems
 in NP

Polynomial time reductions

- X is Polynomial Time Reducible to Y
- Solve problem X with a polynomial number of computation steps and a polynomial number of calls to a black box that solves Y
- Notations: $X<{ }_{p} Y$
- Usually, this is converting an input of X to an input for Y, solving Y, and then converting the answer back

CSE 417

Composability Lemma

- If $X<_{p} Y$ and $Y<_{p} Z$ then $X<_{p} Z$

2/6/2023
CSE 417

Lemmas

- Suppose $\mathrm{X}<_{p} \mathrm{Y}$. If Y can be solved in polynomial time, then X can be solved in polynomial time.
- Suppose $X<_{p} Y$. If X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Cook's Theorem

- There is an NP Complete problem - The Circuit Satisfiability Problem

12/6/2023
CSE 417 9

Populating the NP-Completeness

 Universe- Circuit Sat <p 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set <p Clique
- 3-SAT <p Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman

- 3-SAT <p Integer Linear Programming
- 3-SAT <p Graph Coloring
- 3-SAT <p Subset Sum
- Subset Sum $<_{p}$ Scheduling with Release times and deadlines

NP-Completeness

- A problem X is NP-complete if
-X is in NP
- For every Y in $N P, Y<_{P} X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and $X<p Z$
- Then Z is NP-Complete

```
12/6/2023
```

CSE 417

NP Completeness Proofs

- If X is NP-Complete, Z is in NP and $X<_{p} Z$ - Then Z is NP -Complete

Graph 4-Coloring

- Given a graph G, can G be colored with 4 colors?
- Prove 4-Coloring is NP Complete
- Proof: 3-Coloring <p 4-Coloring
- Show that you can 3-Color a graph if you have an algorithm to 4-Color a graph

12/6/2023
CSE 417
14

Garey and Johnson

How to prove $\mathrm{P}=\mathrm{NP}$		
If X is NP-Complete and X can be solved in polynomial time, then $\mathrm{P}=\mathrm{NP}$		
${ }^{1262033}$	${ }_{\text {cse } 47}$	19

Satisfiability

Literal: A Boolean variable or its negation.	x_{i} or $\overline{x_{i}}$
Clause: A disjunction of literals.	$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form: A propositional	
formula Φ that is the conjunction of clauses.	$\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?
3-SAT: SAT where each clause contains exactly 3 literals.

$$
\text { Ex: }\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$

$$
\text { Yes: } x_{1}=\text { true, } x_{2}=\text { true } x_{3}=\text { false. }
$$

$$
\text { 12/6/2023 CSE } 417
$$

Augmenting Path Algorithm for Matching

Find augmenting path in $\mathrm{O}(\mathrm{m})$ time n phases of augmentation $\mathrm{O}(\mathrm{nm})$ time algorithm for matching 12/6/2023

Exact Cover (sets of size 3) XC3

Given a collection of sets of size 3 of a domain of size 3 N , is there a subcollection of N sets that cover the sets
(A, B, C), (D, E, F), (A, B, G),
(A, C, I), (B, E, G), (A, G, I),
(B, D, F), (C, E, I), (C, D, H),
(D, G, I), (D, F, H), (E, H, I),
(F, G, H), (F, H, I)

$$
3 D M<p \text { XC3 }
$$

3-SAT < 3 Colorability

12/6/2023 CSE 417 27

Graph Coloring

- NP-Complete
- Graph K-coloring
- Graph 3-coloring

Number Problems

- Subset sum problem
- Given natural numbers $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ and a target number W, is there a subset that adds up to exactly W ?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in $\mathrm{O}(\mathrm{nW})$ time

XC3 <p SUBSET SUM

Idea: Represent each set as a large integer, where the element x_{i} is encoded as D^{i} where D is an integer
$\left\{x_{3}, x_{5}, x_{9}\right\}=>D^{3}+D^{5}+D^{9}$
Does there exist a subset that sums to exactly
$D^{1}+D^{2}+D^{3}+\ldots+D^{n-1}+D^{n}$

$$
\begin{aligned}
& \text { Detail: How large is } D \text { ? We need to make sure that we do not have } \\
& \text { any carries, so we can choose } D=m+1 \text {, where } m \text { is the number of } \\
& \text { sets. } \\
& \text { CSE } 417
\end{aligned}
$$

Integer Linear Programming

- Linear Programming - maximize a linear function subject to linear constraints
- Integer Linear Programming - require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_{i} 's
Constraint for clause: $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{2}}\right)$
$x_{1}+\left(1-x_{2}\right)+\left(1-x_{3}\right)>0$
12/6/2023
CSE 417
30

Scheduling with release times and deadlines (RD-Sched)

- Tasks, $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \mathrm{t}_{\mathrm{n}}\right\}$
- Task t_{j} has a length l_{j}, release time r_{j} and deadline d_{j}
- Once a task is started, it is worked on without interruption until it is completed
- Can all tasks be completed satisfying constraints?

Reduction

- Tasks $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \mathrm{t}_{\mathrm{N}}, \mathrm{x}\right\}$
- t_{j} has length s_{j}, release 0 , deadline $K_{2}+1$
- x has length 1 , release K_{1}, deadline $\mathrm{K}_{1}+1$

Subset Sum $<_{p}$ RD-Sched

- Subset Sum Problem
$-\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$, integer K_{1}
- Does there exist a subset that sums to K_{1} ?
- Assume the total sums to K_{2}

Friday: NP-Completeness and Beyond!

