

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, December 11, 8:30 AM
- One Hour Fifty Minutes

Fri, Dec 1	Net Flow Applications
Mon, Dec 4	Net Flow Applications + NP-Completeness
Wed, Dec 6	NP-Completeness
Fri, Dec 8	NP-Completeness
Mon, Dec 11	Final Exam

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

```
12/4/2023
```

CSE 417

Image Segmentation

- Separate foreground from background

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning ito the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} P_{i j}$

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Pixel graph to flow graph
©

CSE 417
\odot
8

Min cut algorithm for profit maximization

- Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Generalization

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each v in V has a profit $\mathrm{p}(\mathrm{v})$
- A set F is feasible if when w in F, and (v, w) in E, then v in F.
- Find a feasible set to maximize the profit

14

Precedence graph construction

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t
 with finite capacity edges

Find a finite value cut with at least two vertices on each side of the cut

The sink side of a finite cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T

18

Setting the costs

- If $p(v)>0$,
$-\operatorname{cap}(v, t)=p(v)$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
- If $p(v)<0$
$-c a p(s, v)=-p(v)$
- $\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$
- If $p(v)=0$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$

Computing the Profit

- $\operatorname{Cost}(W)=\Sigma_{\{w}$ in $\left.w ; p(w)<0\right\}-p(w)$
- Benefit $(W)=\Sigma_{\{w \text { in } w ; p(w)>0\}} p(w)$
- $\operatorname{Profit}(\mathrm{W})=\operatorname{Benefit}(\mathrm{W})-\operatorname{Cost}(W)$
- Maximum cost and benefit
$-\mathrm{C}=\operatorname{Cost}(\mathrm{V})$
$-\mathrm{B}=$ Benefit (V) $\operatorname{Cost}(T), \operatorname{Benefit}(T)$, and $\operatorname{Profit}(T)$

Algorithms vs. Lower bounds

- Algorithmic Theory
- What we can compute
- I can solve problem X with resources R
- Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
- How do we show that something can't be done?

The Universe

CSE 417
27

Theory of NP Completeness

Polynomial Time

- P: Class of problems that can be solved in polynomial time
- Corresponds with problems that can be solved efficiently in practice
- Right class to work with "theoretically"

Decision Problems

- Theory developed in terms of yes/no problems
- Independent set
- Given a graph G and an integer K, does G have an independent set of size at least K
- Shortest Path
- Given a graph G with edge lengths, a start vertex s, and end vertex t, and an integer K, does the graph have a path between s and t of length at most K

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- Independent set of size K - The Independent Set
- Satifisfiable formula
- Truth assignment to the variables
- Hamiltonian Circuit Problem
- A cycle including all of the vertices
- K-coloring a graph
- Assignment of colors to the vertices

12/4/2023
CSE 417
31

Certifiers and Certificates:

 3-SatisfiabilitySAT: Does a given CNF formula have a satisfying formula
Certificate: An assignment of truth values to the n boolean variables
Certifier: Check that each clause has at least one true literal,
instance s
$\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$
certificate t

12/4/2023

```
                                    x}=1,\mp@subsup{x}{2}{}=1,\mp@subsup{x}{3}{}=0,\mp@subsup{x}{4}{}=
```

CSE 417
32

Certifiers and Certificates:

 Hamiltonian CycleHAM-CYCLE. Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Polynomial time reductions

- Y is Polynomial Time Reducible to X
- Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
- Notations: $\mathrm{Y}<_{p} \mathrm{X}$
- Usually, this is converting an input of Y to an input for X , solving X , and then converting the answer back

Composability Lemma

- If $X<p Y$ and $Y<p Z$ then $X<p Z$

Lemmas

- Suppose $Y<{ }_{p} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Suppose $\mathrm{Y}<_{p} \mathrm{X}$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if
-X is in NP
- For every Y in $\mathrm{NP}, \mathrm{Y}<_{\mathrm{p}} \mathrm{X}$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and $X<p$ - Then Z is NP-Complete

Cook's Theorem

- There is an NP Complete problem
- The Circuit Satisfiability Problem

12/4/2023

Populating the NP-Completeness Universe

- Circuit Sat <p 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set <p Clique
- 3-SAT <p Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman

- 3-SAT <p Integer Linear Programming
- 3-SAT $<$ p Graph Coloring
- 3-SAT <p Subset Sum
- Subset Sum <p Scheduling with Release times and deadlines

Graph 4-Coloring

- Given a graph G , can G be colored with 4 colors?
- Prove 4-Coloring is NP Complete
- Proof: 3-Coloring <p 4-Coloring
- Show that you can 3-Color a graph if you have an algorithm to 4-Color a graph

Graph Coloring

- NP-Complete
- Graph 3-coloring
- Polynomial
- Graph 2-Coloring

3-Coloring $<p$ 4-Coloring

