

Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, December 11, 8:30 AM
- One Hour Fifty Minutes

Fri, Dec 1	Net Flow Applications
Mon, Dec 4	Net Flow Applications + NP-Completeness
Wed, Dec 6	NP-Completeness
Fri, Dec 8	NP-Completeness
Mon, Dec 11	Final Exam

12/1/2023
CSE 417
2

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Guts
- Maxflow-MinCut Theorem
- Maxflow Algorithms
- Simple applications of Max Flow
- Non-simple applications of Max Flow

12/1/2023
CSE 417 3

Max Flow - Min Cut Theorem

- There exists a cut S, T such that $\operatorname{Flow}(\mathrm{S}, \mathrm{T})=\operatorname{Cap}(\mathrm{S}, \mathrm{T})$
- Proof also shows that Ford Fulkerson algorithm finds a maximum flow

Ford Fulkerson Runtime

- Cost per phase X number of phases
- Phases
- Capacity leaving source: C
- Add at least one unit per phase
- Cost per phase
- Build residual graph: O(m)
- Find s-t path in residual: $\mathrm{O}(\mathrm{m})$

12/1/2023
CSE 417

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Network flow performance

- Ford-Fulkerson algorithm
- O(mC)
- Find the maximum capacity augmenting path - $\mathrm{O}\left(\mathrm{m}^{2} \log (\mathrm{C})\right)$ time algorithm for network flow
- Find the shortest augmenting path
- $O\left(m^{2} n\right)$ time algorithm for network flow
- Find a blocking flow in the residual graph
- $\mathrm{O}(\mathrm{mnlog} \mathrm{n}$) time algorithm for network flow
- Interior Point Methods
$-\mathrm{O}(\mathrm{m}+\mathrm{n})$

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Multi-source network flow

- Multi-source network flow
- Sources $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Sinks $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{j}}$
- Solve with Single source network flow

Baseball elimination			
- Can the Dinosaurs win the league? - Remaining games: - AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$		W	L
	Ants	4	2
	Bees	4	2
	Cockroaches	3	3
	Dinosaurs	1	5
A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same number of wins			

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
- AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$

A team wins the league if it has strictly more wins than any other team at the end of the season
A team ties for first place if no team has more wins, and there is some other team with the same

Converting Matching to Network Flow

Resource Allocation:
 Assignment of reviewers

- A set of papers P_{1}, \ldots, P_{n}
- A set of reviewers R_{1}, \ldots, R_{m}
- Paper P_{i} requires A_{i} reviewers
- Reviewer R_{j} can review B_{j} papers
- For each reviewer R_{j}, there is a list of paper $L_{j 1}, \ldots$, $L_{j k}$ that R_{j} is qualified to review

Baseball elimination

- Can the Fruit Flies win or tie the league?
- Remaining games:
- AC, AD, AD, AD, AF, $B C, B C, B C, B C, B C$, $B D, B E, B E, B E, B E$, BF, CE, CE, CE, CF, CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dinosaurs (5)
- Earthworms (5)
- 18 games to play
- AC, AD, AD, AD, BC, BC,
$B C, B C, B C, B D, B E, B E$,
BE, BE, CE, CE, CE, DE

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

\qquad
19

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

12/1/2023
CSE 417
21

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning ito the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} P_{i j}$

