

Announcements

- · Homework 9
- · Exam practice problems on course homepage
- Final Exam: Monday, December 11, 8:30 AM
 One Hour Fifty Minutes

Fri, Dec 1	Net Flow Applications	
Mon, Dec 4	Net Flow Applications + NP-Completeness	
Wed, Dec 6	NP-Completeness	
Fri, Dec 8	NP-Completeness	
Mon, Dec 11	Final Exam	
12/1/2023	CSE 417	2

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Maxflow Algorithms
- · Simple applications of Max Flow
- · Non-simple applications of Max Flow

12/1/2023 CSE 417

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- · Problem: Find the s-t Cut with minimum capacity

Max Flow - Min Cut Theorem

- There exists a cut S, T such that Flow(S,T) = Cap(S,T)
- Proof also shows that Ford Fulkerson algorithm finds a maximum flow

12/1/2023 CSE 417 6

Ford Fulkerson Runtime

- Cost per phase X number of phases
- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- · Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

12/1/2023 CSE 417

Network flow performance

- Ford-Fulkerson algorithm
 - O(mC)
- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- · Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 O(mnlog n) time algorithm for network flow
- O(mnlog n) time algorithm for netwo
 Interior Point Methods
 - -O(m + n)

12/1/2023 CSF 417

Problem Reduction

- · Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

12/1/2023 CSE 417

Problem Reduction Examples

 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

12/1/2023

Construct an equivalent minimization problem

Undirected Network Flow

- · Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- · Find a matching as large as possible

12/1/2023 CSE 417 12

Application

- · A collection of teachers
- A collection of courses

12/1/2023

· And a graph showing which teachers can teach which courses

RA	\circ	\bigcirc	143
РВ	\circ	\circ	373
ME	\bigcirc	\bigcirc	414
DG	\circ	\bigcirc	415
AK		CSE 417	417

Multi-source network flow

13

- · Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_i
- · Solve with Single source network flow

CSE 417 12/1/2023 15

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_i can review B_j papers
- For each reviewer R_j , there is a list of paper $L_{j1},\,\ldots,\,L_{jk}$ that R_j is qualified to review

CSE 417 12/1/2023 16

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
 - AB, AC, AD, AD, AD, BC, BC, BC, BD, CD

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same number of wins

CSE 417 12/1/2023

Baseball elimination

- · Can the Fruit Flies win or tie the league?
- · Remaining games:
 - AC, AD, AD, AD, AF, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, BF, CE, CE, CE, CF, CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

12/1/2023 CSE 417 18

Assume Fruit Flies win remaining games

 Fruit Flies are tied for first place if no team wins more than 19 games

- Allowable wins
 - Ants (2)
 - Bees (3)
 - Cockroaches (3)Dinosaurs (5)
 - Earthworms (5)
- 18 games to play
 - AC, AD, AD, AD, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, CE, CE, CE, DE

52, 52, 62, 62, 52

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

2/1/2023 CSE 417 19

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- · Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T

The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

12/1/2023 CSE 417

21

Image analysis

- · a: value of assigning pixel i to the foreground
- · b_i: value of assigning pixel i to the background
- $p_{j\bar{j}}$: penalty for assigning i to the foreground, j to the background or vice versa
- · A: foreground, B: background
- Q(A,B) = $\Sigma_{\{i \text{ in A}\}}a_i$ + $\Sigma_{\{j \text{ in B}\}}b_j$ $\Sigma_{\{(i,j) \text{ in E, i in A, j in B}\}}p_{ij}$

12/1/2023 CSE 417 24

