

11/29/2023 CSE 417

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- · Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- · Simple applications of Max Flow

29/2023 CSE 417

2

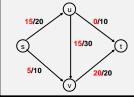
Network Flow Definitions

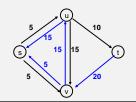
- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

11/29/2023 CSE 417

Residual Graph

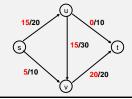
- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph GR
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity c f
 - G_R: edge e" from v to u with capacity f

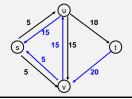




Augmenting Path Algorithm

- · Augmenting path in residual graph
 - Vertices $v_1, v_2, ..., v_k$
 - $v_1 = s, v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j=1\dots k-1$





Adding flow along a path in the residual graph

- Let P be an s-t path in the residual graph with capacity b
- b units of flow can be added along P in the graph G
- · Need to show:
 - new flow satisfies capacity constraints
 - new flow satisfies conservation constraints

11/29/2023 CSE 417 6

Ford-Fulkerson Algorithm (1956)

while not done

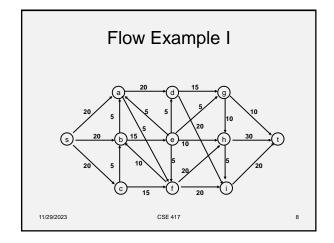
Construct residual graph G_R

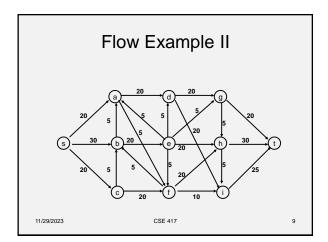
Find an s-t path P in G_R with capacity b>0

Add b units of flow along path P in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

11/29/2023 CSE 417

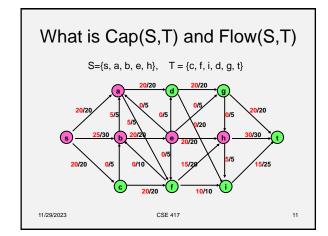


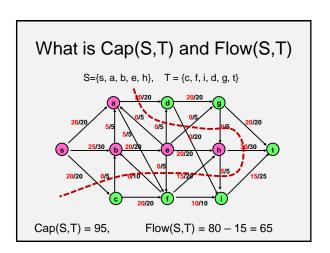


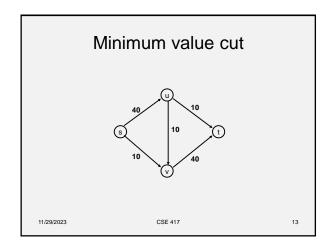
Cuts in a graph

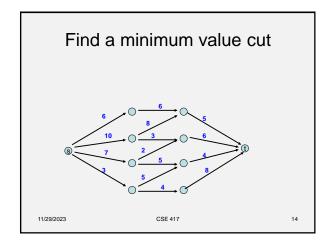
- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 Sum of flows out of S minus sum of flows into S
- Flow(S,T) <= Cap(S,T)

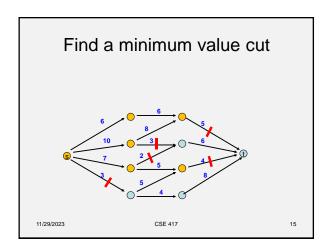
11/29/2023 CSE 417 10

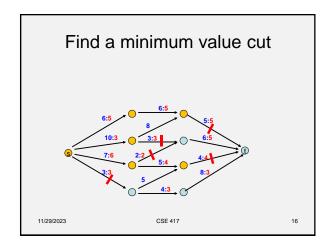




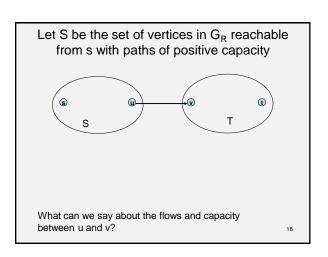








MaxFlow – MinCut Theorem There exists a flow which has the same value of the minimum cut Proof: Consider a flow where the residual graph has no s-t path with positive capacity Let S be the set of vertices in G_R reachable from s with paths of positive capacity



Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

19

21

11/29/2023

11/29/2023 CSE 417

History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

20

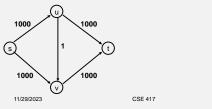
Ford Fulkerson Runtime

- Cost per phase X number of phases
- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- · Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

11/29/2023 CSE 417

Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible



22

Better methods of finding augmenting paths

- Find the maximum capacity augmenting nath
 - O(m²log(C)) time algorithm for network flow
- · Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- · Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow

11/29/2023 CSE 417 23

Problem Reduction

- · Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- · Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

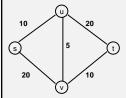
 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)



Construct an equivalent flow problem

Bipartite Matching

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- · Find a matching as large as possible

Application

- · A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA 🔵

143

рв 🔘

373

ME O

414

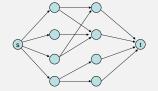
DG 🔘

415

AK 🔵

417

Converting Matching to Network Flow



Multi-source network flow

- · Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- · Solve with Single source network flow

Resource Allocation: Assignment of reviewers A set of papers P₁, ..., P_n A set of reviewers R₁, ..., R_m Paper P_i requires A_i reviewers Reviewer R_j can review B_j papers For each reviewer R_j, there is a list of paper L_{j1}, ..., L_{jk} that R_j is qualified to review