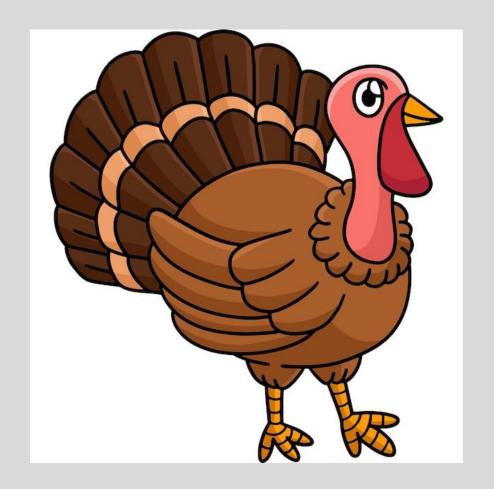
CSE 417: Algorithms with Complexity

Lecture 23
Shortest Paths Problem and
Dynamic Programming

Announcements

No class on Friday



Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
 - O(mlog n) time, positive cost edges
- Bellman-Ford Algorithm
 - O(mn) time for graphs which can have negative cost edges

Dynamic Programming

Express problem as an optimization

 Order subproblems so that results are computed in proper order

Shortest Paths as DP

- Dist_s[s] = 0
- $Dist_s[v] = min_w [Dist_s[w] + c_{wv}]$

How do we order the computation

- Directed Acyclic graph: Topological Sort
- Dijkstra's algorithm determines an order

Lemma

 If a graph has no negative cost cycles, then the shortest paths are simple paths

Shortest paths have at most n-1 edges

Shortest paths with a given number of edges

 Find the shortest path from s to w with exactly k edges

Express as a recurrence

Compute distance from starting vertex s

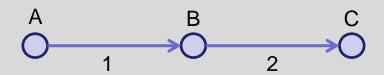
- $Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]$
- $Opt_0(w) = 0$ if w = s and infinity otherwise

```
for each w M[0, w] = infinity; M[0, s] = 0; for i = 1 to n-1 for each w M[i, w] = min_x(M[i-1,x] + cost[x,w]);
```

```
for each w M[0, w] = infinity; M[0, s] = 0; for i = 1 to n-1 for each w M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]));
```

```
for each w M[w] = infinity; M[s] = 0; for i = 1 to n-1 for each w M[w] = min(M[w], min_x(M[x] + cost[x,w]));
```

Example:



Α	В	С

А	В	С

А	В	С

Α	В	C

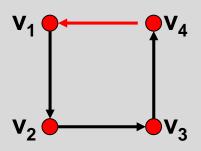
Correctness Proof for Algorithm 3

- Key lemmas, for all w:
 - There exists a path of length M[w] from s to w
 - At the end of iteration i, M[w] ≤ M[i, w];

```
for each w
   M[w] = infinity;
M[s] = 0;
for i = 1 to n-1
  for each w
     for each x
        if (M[w] > M[x] + cost[x,w])
           P[w] = x;
           M[w] = M[x] + cost[x,w];
```

Theorem

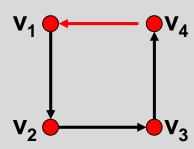
If the pointer graph has a cycle, then the graph has a negative cost cycle



11/22/2023 Proof: See text.

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If P[w] = x then M[w] >= M[x] + cost(x,w)
 - Equal when w is updated
 - M[x] could be reduced after update
- Let v₁, v₂,...v_k be a cycle in the pointer graph with (v_k,v₁) the last edge added
 - Just before the update
 - $M[v_j] >= M[v_{j+1}] + cost(v_{j+1}, v_j)$ for j < k
 - $M[v_k] > M[v_1] + cost(v_1, v_k)$
 - Adding everything up
 - $0 > cost(v_1, v_2) + cost(v_2, v_3) + ... + cost(v_k, v_1)$

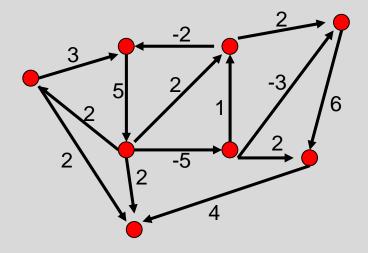


Negative Cycles

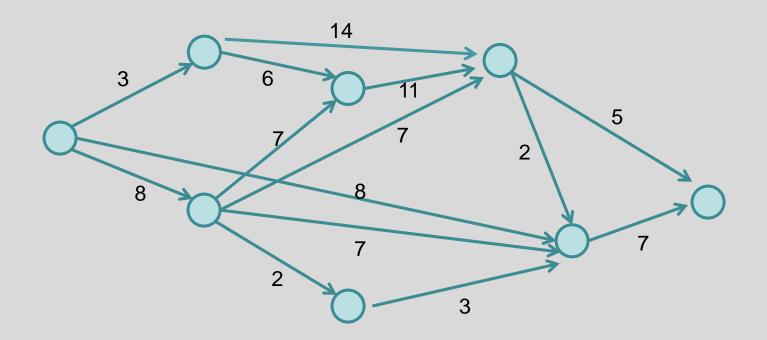
- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

What if you want to find negative cost cycles?



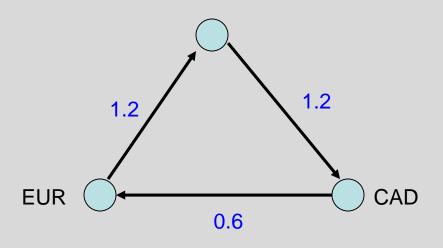
Finding the longest Path in a DAG



What about finding Longest Paths in a directed graph

Can we just change Min to Max?

Foreign Exchange Arbitrage



		USD		
	0.8		0.8	
EUR				CAD
LUK		1.6		CAD

	USD	EUR	CAD
USD		8.0	1.2
EUR	1.2		1.6
CAD	0.8	0.6	