CSE 417 Algorithms and Complexity

Autumn 2023
Lecture 22
Longest Common Subsequence

Announcements

- Lecture plans
- Monday: Longest Common Subsequence
- Wednesday: Shortest Paths
- Friday: No Class
- After Thanksgiving: Network Flow + NP Completeness
- Homework plans
- HW 8, Due Wednesday, November 29
- HW 9, Due Friday, December 8

Last week, subset sum

- Given integers $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}$ and an integer K
- Find a subset that is as large as possible that does not exceed K
- Opt[j, K] the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K
- Opt[$\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

$$
\begin{aligned}
& \text { for } \mathrm{j}=1 \text { to } \mathrm{n} \\
& \quad \text { for } \mathrm{k}=1 \text { to } \mathrm{W} \\
& \quad \text { Opt[j, } \mathrm{k}]=\max \left(\operatorname{Opt}[j-1, k], \operatorname{Opt}\left[j-1, k-w_{j}\right]+w_{j}\right)
\end{aligned}
$$

Two dimensional dynamic programming

Subset sum and knapsack
Opt[j, K] = max (Opt[j - 1, K], Opt[j - 1, K $-\mathrm{w}_{\mathrm{j}}$] $\left.+\mathrm{w}_{\mathrm{j}}\right)$
$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

4	0																
3	0																
2	0																
1	0																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reducing dimensions

- Computing values in the array only requires the previous row
- Easy to reduce this to just tracking two rows
- And sometimes can be implemented in a single row
- Space savings is significant in practice
- Reconstructing values is harder

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B
ocurranec
occurrence
attacggct
tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

- Align sequences with gaps CAT TGA AT

CAGAT AGGA

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Recursive Version

$\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{n}\right)\{$ if $\left(a_{m}==b_{n}\right)$
return $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{m-1}, b_{1} b_{2} \ldots b_{n-1}\right)+1 ;$ else

$$
\begin{array}{r}
\text { return max }\left(\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{m-1}, b_{1} b_{2} \ldots b_{n}\right),\right. \\
\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{n-1}\right) ;
\end{array}
$$

\}

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt[$\mathrm{j}, \mathrm{k}]$ is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

Optimization recurrence

$$
\begin{aligned}
& \text { If } a_{j}=b_{k}, \operatorname{Opt}[j, k]=1+\operatorname{Opt}[j-1, k-1] \\
& \text { If } a_{j} \neq b_{k}, \operatorname{Opt}[j, k]=\max (\operatorname{Opt}[j-1, k], \operatorname{Opt}[j, k-1])
\end{aligned}
$$

Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

$$
\text { Opt }[j, k]=
$$

Let $a_{j}=x$ and $b_{k}=y$
Express as minimization

String edit with Typo Distance

- Find closest dictionary word to typed word
- $\operatorname{Dist(}\left({ }^{\prime} a^{\prime}, ~ ' s '\right)=1$
- $\operatorname{Dist('a',~'u')~}=6$
- Capture the likelihood of mistyping characters

Dynamic Programming Computation

Code to compute Opt[n, m]

for (int $i=0 ; i<n ; i++)$ for (int $j=0 ; j<m ; j++$)
if (A [i] == B[j])
Opt[i,j] = Opt[i-1, j-1] + 1;
else if (Opt[i-1, j] >= Opt[i, j-1])
Opt[i, j] := Opt[i-1, j];
else
Opt[i, j] := Opt[i, j-1];

Storing the path information

A[1..m], B[1..n]

$$
\begin{aligned}
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{m} \quad \text { Opt }[i, 0]:=0 ; \\
& \text { for } \mathrm{j}:=1 \text { to } \mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0 ; \\
& \text { Opt }[0,0]:=0 ; \\
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{m}
\end{aligned}
$$

$$
\text { for } \mathrm{j}:=1 \text { to } \mathrm{n}
$$

$$
\begin{aligned}
& \text { if } A[i]=B[j]\{\text { Opt[i,j] := } 1+\text { Opt[i-1,j-1]; Best[i,j] := Diag; \} } \\
& \text { else if Opt[i-1, j] >= Opt[i, j-1] } \\
& \text { \{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; \} } \\
& \text { else } \quad\{\text { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; \} }
\end{aligned}
$$

Reconstructing Path from Distances

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

Implementation 1

```
public int ComputeLCS() {
    int n = str1.Length;
    int m = str2.Length;
    int[,] opt = new int[n + 1, m + 1];
    for (int i = 0; i <= n; i++)
        opt[i, 0] = 0;
    for (int j = 0; j <= m; j++)
        opt[0, j] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            if (str1[i-1] == str2[j-1])
                        opt[i, j] = opt[i - 1, j - 1] + 1;
            else if (opt[i - 1, j] >= opt[i, j - 1])
                    opt[i, j] = opt[i - 1, j];
            else
                        opt[i, j] = opt[i, j - 1];
        return opt[n,m];
    }
```


$N=17000$

Runtime should be about 5 seconds*

```
Fnamespace LongestCommonSubsequence {
    Class LcsAlgorithm {
        int[] str1;
        int[] str2;
        int[,] opt;
        public LcsAlgorithm (int[] str1, int[] str2) { Microsoft Visual Studio Express 2015 for Windows Desktop
            this.str1 = str1;
            this.str2 = str2
        }
        | An unhandled exception of type 'System.OutOfMemoryException' occurred in
        public int ComputeLCS() {
        int n = str1.Length;
            int m = str2.Length;
            /* Adding an extra row and column to the ari
                This means the strings are indexed from z
            opt = new int[n + 1, m + 1];
            for (int i = 0; i<= n; i++
                opt[i, 0] = 0;
            opt[i, 0] = 0;
            for (int j = 0; j <= m; j++
                opt[0, j] = 0;
            for (int i = 1; i<= n; i++)
                for (int j=1; j<=m; j++)
                    if (str1[i-1] == str2[j-1]
```



```
\square
```


Implementation 2

```
public int SpaceEfficientLCS() {
    int n = str1.Length;
    int m = str2.Length;
    int[] prevRow = new int[m + 1];
    int[] currRow = new int[m + 1];
    for (int j = 0; j <= m; j++)
    prevRow[j] = 0;
    for (int i = 1; i <= n; i++) {
    currRow[0] = 0;
    for (int j = 1; j <= m; j++) {
        if (str1[i - 1] == str2[j - 1])
            currRow[j] = prevRow[j - 1] + 1;
            else if (prevRow[j] >= currRow[j - 1])
                currRow[j] = prevRow[j];
            else
                currRow[j] = currRow[j - 1];
    }
    for (int j = 1; j <= m; j++)
        prevRow[j] = currRow[j];
    }
    return currRow[m];
}
```


$N=300000$

N: 10000 Base 2 Length: 8096 Gamma: 0.8096 Runtime:00:00:01.86
N: 20000 Base 2 Length: 16231 Gamma: 0.81155 Runtime:00:00:07.45
N: 30000 Base 2 Length: 24317 Gamma: 0.8105667 Runtime:00:00:16.82
N: 40000 Base 2 Length: 32510 Gamma: 0.81275 Runtime:00:00:29.84
N: 50000 Base 2 Length: 40563 Gamma: 0.81126 Runtime:00:00:46.78
N: 60000 Base 2 Length: 48700 Gamma: 0.8116667 Runtime:00:01:08.06
N: 70000 Base 2 Length: 56824 Gamma: 0.8117715 Runtime:00:01:33.36

N: 300000 Base 2 Length: 243605 Gamma: 0.8120167 Runtime:00:28:07.32

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(m+n)$ space if we only need one column of the Opt values or Best Values
- The computation requires $\mathrm{O}(\mathrm{nm})$ space if we store all of the string information

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{n}+\mathrm{m})$ space

- Divide and conquer algorithm
- Recomputing values used to save space
- Section 6.7 of the text, but we will not have time to cover in detail (so you are not responsible for section 6.7)

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i , and for each j , compute the LCS that has a_{i} matched with b_{j}

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$
- Solution: $T(m, n)<=2 c n m$

