CSE 417 Algorithms

Lecture 21, Autumn 2023
Dynamic Programming Subset Sum etc.

11/17/2023
CSE 417

Announcements

- Homework 8: Due Wednesday, Nov 29
- Homework 9: Due Friday, Dec 8
- Dynamic Programming Reading:
-6.1-6.2, Weighted Interval Scheduling
- Path Counting, Paragraphing
- 6.4 Knapsack and Subset Sum
- 6.6 String Alignment
- 6.7* String Alignment in linear space
- 6.8 Shortest Paths (again)
- 6.9 Negative cost cycles
- How to make an infinite amount of money

CSE 417
2

What is the largest sum you can make of the following integers that is ≤ 20
$\{4,5,8,10,13,14,17,18,21,23,28,31,37\}$

What is the largest sum you can make of the following integers that is ≤ 2000
$\{78,101,122,133,137,158,189,201,220$, 222, 267, 271, 281, 289, 296, 297, 301, 311, $315,321,322,341,349,353,361,385,396$ \}

Subset Sum Problem

- Given integers $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}$ and an integer K
- Find a subset that is as large as possible that does not exceed K
- Dynamic Programming: Express as an optimization over sub-problems.
- New idea: Represent at a sub problems depending on K and n
- Two dimensional grid

Subset Sum Optimization

Opt $[\mathrm{j}, \mathrm{K}]$ the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K
Opt [j, K] $=\max \left(\right.$ Opt $\left.[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

Subset Sum Code

for $\mathrm{j}=1$ to n
for $k=1$ to W
Opt $[\mathrm{j}, \mathrm{k}]=\max \left(\right.$ Optiji-1, k], Optij-1, $\left.\left.k-w_{j}\right]+w_{j}\right)$

Knapsack Recurrence

Subset Sum Recurrence:
Opt [j, K] $=\max \left(\right.$ Opt $\left.[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{i}}\right)$
Knapsack Recurrence:

CSE 417
11

Knapsack Recurrence		
Subset Sum Recurrence:		
Opt [j, K] = max (Opt[j - 1, K], Opt[j - 1, K - wij + wis)		
Knapsack Recurrence:		
111772023	cse 417	11

Subset Sum Grid

$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

4	0	2	2	4	4	6	7	7	9	10	11	12	13	14	14	16	17
3	0	2	2	4	4	6	7	7	9	9	11	11	13	13	13	13	13
2	0	2	2	4	4	6	6	6	6	6	6	6	6	6	6	6	6
1	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11/17/2023
$\{2,4,7,10\}$
11/17/2023 CSE 417

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Bound K
- Find set S of indices to:
- Maximize $\sum_{\text {iss }} V_{i}$ such that $\sum_{\text {iss }} \mathrm{w}_{\mathrm{i}}<=\mathrm{K}$

CSE 417
10

Knapsack Grid

$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

Weights $\{2,4,7,10\}$ Values: $\{3,5,9,16\}$
11/17/2023
CSE 417
12

Knapsack Grid

$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

4	0	3	3	5	5	8	9	9	12	16	16	18	18	21	21	24	25
3	0	3	3	5	5	8	9	9	12	12	14	14	17	17	17	17	17
2	0	3	3	5	5	8	8	8	8	8	8	8	8	8	8	8	8
1	0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Weights $\{2,4,7,10\}$ Values: $\{3,5,9,16\}$ 11/17/2023 CSE 417

Run time for Subset Sum

- With n items and target sum K, the run time is $\mathrm{O}(\mathrm{nK})$
- If K is $1,000,000,000,000,000,000,000,000$ this is very slow
- Alternate brute force algorithm: examine all subsets: O(n2 ${ }^{n}$)
- Point of confusion: Subset sum is NP Complete

Two dimensional dynamic programming

Subset sum and knapsack
$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\mathrm{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$
Opt [j, K] $=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

4	0																					
3	0																					
2	0																					
1	0																					
	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
16																						

Reducing dimensions

- Computing values in the array only requires the previous row
- Easy to reduce this to just tracking two rows
- And sometimes can be implemented in a single row
- Space savings is significant in practice
- Reconstructing values is harder

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- $\operatorname{LCS}(\mathrm{A}, \mathrm{B})$: A maximum length sequence that is a subsequence of both A and B

```
ocurranec
occurrence
11/17/2023
CSE 417
```

attacggct
tacgacca

Determine the LCS of the following
strings
BARTHOLEMEWSIMPSON
KRUSTYTHECLOWN
CSE417

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt[$\mathrm{j}, \mathrm{k}]$ is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

String Alignment Problem

- Align sequences with gaps

CAT TGA AT
CAGAT AGGA

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Note: the problem is often expressed as a minimization problem,
with $y_{1 / x / \overline{2} 00_{3}}$ and $\delta_{x}>0$
CSE 417

Optimization recurrence

If $\mathrm{a}_{\mathrm{j}}=\mathrm{b}_{\mathrm{k}}$, Opt[$\left.\mathrm{j}, \mathrm{k}\right]=1+\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}-1]$

If $\mathrm{a}_{\mathrm{j}} \neq \mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=\max (\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}], \operatorname{Opt}[\mathrm{j}, \mathrm{k}-1])$

