

Key Ideas for Dynamic Programming

- Give a recursive solution for the problem in terms of optimizing an objective function
- Order sub-problems to avoid duplicate computation
- Determine the elements that form the solution

Announcements

- Dynamic Programming Reading:
-6.1-6.2, Weighted Interval Scheduling
- 6.4 Knapsack and Subset Sum
-6.6 String Alignment
-6.7* String Alignment in linear space
-6.8 Shortest Paths (again)
-6.9 Negative cost cycles
- How to make an infinite amount of money

Weighted Interval Scheduling

- Given a collection of intervals I_{1}, \ldots, I_{n} with weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$, choose a maximum weight set of non-overlapping intervals

Intervals sorted by end time

Optimality Condition

- Opt[j] is the maximum weight independent set of intervals $I_{1}, I_{2}, \ldots, I_{j}$
- Opt[j$]=\max \left(\operatorname{Opt}[\mathrm{j}-1], \mathrm{w}_{\mathrm{j}}+\operatorname{Opt}[\mathrm{p}[\mathrm{j}]]\right)$
- Where $p[j]$ is the index of the last interval which finishes before l_{j} starts
- Convert to iterative algorithm to compute: Opt[1], Opt[2], Opt[3],..., Opt[n-1], Opt[n]

11/15/2023
CSE 417

Iterative Algorithm

```
MaxValue(n){
    int[ ] M = new int[[n+1];
    M[0] = 0;
    for (int i= 1; i <= n; i++){
        M[j] = max(M[j-1], w 
    }
    return M[n];
}
```


Recursive Algorithm

```
PC(v){
    if (v== vo)
        return 1;
    count = 0;
    foreach (w in N+
        count = count + PC(w);
    }
    return count;
    }
```

 11/15/2023
 CSE 417

Ordering the vertices

How do you order the vertices of a DAG such that if there is an edge from v to w, w comes before v in the ordering?

Path Counting

```
G=(V,E) is an n node directed acyclic graph, with }\mp@subsup{\textrm{v}}{\textrm{n}-1}{},\mp@subsup{v}{n-2}{},\ldots
v
giving the number of paths from each vertex to vo
CountPaths(G, P){
    P[0] = 1;
    for (i = 1 to n-1){
        P[i] = 0;
        foreach (w in N+(vi)){
            P[i] = P[i] + P[w];
    }
}

\section*{Typesetting}
- Layout text on a page to optimize readability and aesthetic measures
- Skilled profession replaced by computing
- Goal - give text a uniform appearance which is primarily done by choosing line breaks to balance white space
- Interword spacing can stretch or shrink
- Hyphenation is sometimes available

\section*{Optimal Line Breaking}
- Words have length \(w_{i}\), line length \(L\)
- Penalty related to white space or overflow of the line
- Quadratic measure often used
- Pen(i, j): Penalty for putting \(w_{i}, w_{i+1}, \ldots, w_{j}\) on the same line
- Opt[m]: minimum penalty for ending a line with \(\mathrm{w}_{\mathrm{m}}\)

\section*{Optimal Line Breaking}

Optimal score for ending a line with \(\mathrm{w}_{\mathrm{m}}\)

Opt[m] \(=\min _{i}\{\) Opt [ i\(\left.]+\operatorname{Pen}(\mathrm{i}+1, \mathrm{~m})\right\}\) for \(0<\mathrm{i}<\mathrm{m}\)

For words \(w_{1}, w_{2}, \ldots, w_{n}\), we compute Opt[n] to find the optimal layout
\begin{tabular}{|l|}
\hline Optimal Line Breaking \\
Optimal score for ending a line with \(\mathrm{w}_{\mathrm{m}}\) \\
Opt[m] \(=\min _{\mathrm{i}}\{\) Opt \([\mathrm{i}]+\operatorname{Pen}(\mathrm{i}+1, \mathrm{~m})\}\) for \(0<\mathrm{i}<\mathrm{m}\) \\
For words \(\mathrm{w}_{1}, w_{2}, \ldots, w_{n}\), we compute Opt[n] to \\
find the optimal layout
\end{tabular}

\section*{Optimal line breaking}

Element distinctness has been a particular focus of lower bound analysis. The first time-space tradeoff lower bounds for the problem apply to structured algorithms. Borodin et al. [13] gave a time-space tradeoff lower bound for computing \(E D\) on comparison branching programs of \(T \in \Omega\left(n^{3 / 2} / S^{1 / 2}\right)\) and, since \(S \geq \log _{2} n, T \in\) \(\Omega\left(n^{3 / 2} \sqrt{\log n} / S\right)\). Yao [32] improved this to a near-optimal \(T \in \Omega\left(n^{2-\epsilon(n)} / S\right)\), where \(\epsilon(n)=5 /(\ln n)^{1 / 2}\). Since these lower bounds apply to the average case for randomly ordered inputs, by Yao's lemma, they also apply to randomized comparison branching programs. These bounds also trivially apply to all frequency moments since, for \(k \neq 1\), \(E D(x)=n\) iff \(F_{k}(x)=n\). This near-quadratic lower bound seemed to suggest that the complexity of \(E D\) and \(F_{k}\) should closely track that of sorting.

11/15/2023

The quick brown
fox jumped over
the lazy dog.

The quick brown
fox jumped over the lazy dog.

Pen("The quick brown") \(=1\)
Pen("fox jumped over") \(=2\)
Pen("fox jumped") 8
Pen("the lazy dog") = 6
Pen("over the lazy dog.") \(=4\)
Pen(i, j): Penalty for putting \(w_{i}, w_{i+1}, \ldots, w_{j}\) on the same line

\section*{Optimal Line Breaking}
```

Opt[0] = 0;
for m = 1 to n{
Find i that minimizes Opt [i] + Pen(i+1,m);
Opt[m] = Opt [i] + Pen(i+1,m);
Pred[m] = i;
}

```
```

