

Announcements

- No class on Friday

Divide and Conquer

- Monday's Algorithms
- O($\mathrm{n}^{2.80}$) Matrix Multiplication (Strassen)
- O(n) Median Algorithm
- Quicksort style algorithm
- Complicated mechanism to make it deterministic
- Today's Algorithms
- Counting Inversions
- Integer Multiplication
- Closest Pair (in 2D)

Inversion Problem

- Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
- $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right)$ is an inversion if $\mathrm{i}<\mathrm{j}$ and $\mathrm{a}_{\mathrm{i}}>\mathrm{a}_{\mathrm{j}}$

$$
4,6,1,7,3,2,5
$$

- Problem: given a permutation, count the number of inversions
- This can be done easily in $O\left(n^{2}\right)$ time
- Can we do better?
\qquad

Counting Inversions

11	12	4	1	7	2	3	15	9	5	16	8	6	13	10	14

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves

Problem - how do we count inversions between sub problems in $\mathrm{O}(\mathrm{n})$ time?

- Solution - Count inversions while merging

| 1 | 2 | 3 | 4 | 7 | 11 | 12 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Standard merge algorithm - add to inversion count when an element is moved from the upper array to the solution

Inversions

- Counting inversions between two sorted lists
- O(1) per element to count inversions

- Algorithm summary
- Satisfies the "Standard recurrence"
$-T(n)=2 T(n / 2)+c n$

$$
\left.\begin{array}{l}
\text { Recursive Multiplication Algorithm (First } \\
\quad \text { attempt) } \\
x=x_{1} 2^{n / 2}+x_{0} \\
y=y_{1} 2^{n / 2}+y_{0} \\
x y
\end{array}\right)\left(x_{1} 2^{2 / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) .
$$

Recurrence:
Run time:

Karatsuba's Algorithm

Multiply n-digit integers x and y

$$
\text { Let } x=x_{1} 2^{n / 2}+x_{0} \text { and } y=y_{1} 2^{n / 2}+y_{0}
$$ Recursively compute

$$
\begin{aligned}
& a=x_{1} y_{1} \\
& b=x_{0} y_{0}
\end{aligned}
$$

$$
p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)
$$

$$
\begin{gathered}
p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
\text { Return } a 2^{n}+(p-b) 2^{n / 2}+b
\end{gathered}
$$

Recurrence: $T(n)=3 T(n / 2)+c n$

$\log _{2} 3=1.58496250073 \ldots$

Closest Pair Problem (2D)

- Given a set of points find the pair of points p, q that minimizes $\operatorname{dist}(\mathrm{p}, \mathrm{q})$

Packing Lemma

Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ ?

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Combining Solutions

- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

A packing lemma bounds the number of distances to check

Details

- Preprocessing: sort points by y
- Merge step
- Select points in boundary zone
- For each point in the boundary
- Find highest point on the other side that is at most δ above
- Find lowest point on the other side that is at most δ below
- Compare with the points in this interval (there are at most 6)

Identify the pairs of points that are compared in the merge step following the recursive calls

Algorithm run time

- After preprocessing:
$-T(n)=c n+2 T(n / 2)$

