CSE 417 Algorithms and Complexity

Autumn 2023
Lecture 18
Divide and Conquer

Announcements

No class on Friday

Divide and Conquer

- Monday's Algorithms
 - O(n^{2.80}) Matrix Multiplication (Strassen)
 - O(n) Median Algorithm
 - Quicksort style algorithm
 - Complicated mechanism to make it deterministic
- Today's Algorithms
 - Counting Inversions
 - Integer Multiplication
 - Closest Pair (in 2D)

Inversion Problem

- Let a₁, . . . a_n be a permutation of 1 . . n
- (a_i, a_j) is an inversion if i < j and a_i > a_j

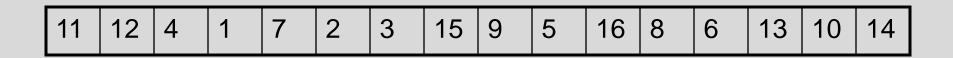
4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time
 - Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

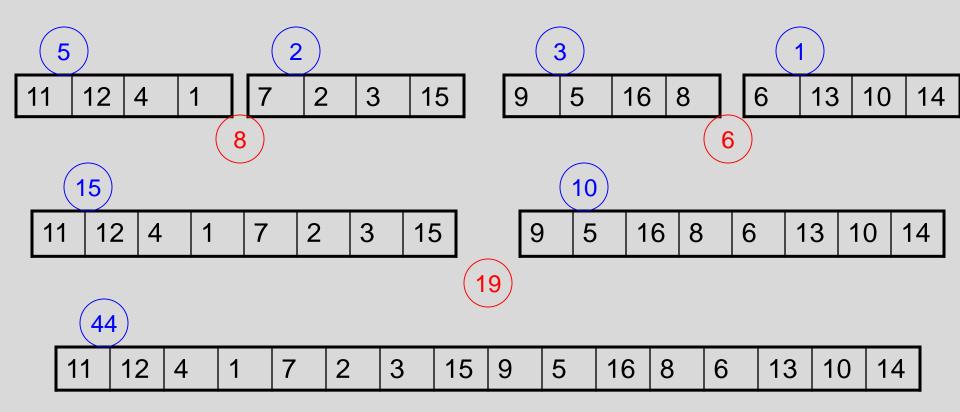


Count inversions on lower half

Count inversions on upper half

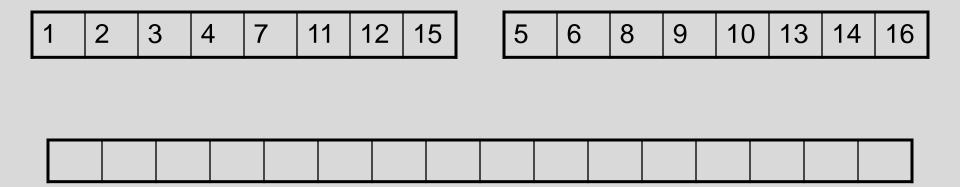
Count the inversions between the halves

Count the Inversions



Problem – how do we count inversions between sub problems in O(n) time?

Solution – Count inversions while merging

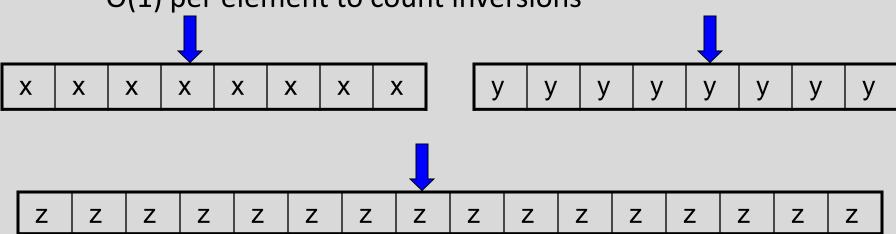


Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions

Inversions

- Counting inversions between two sorted lists
 - O(1) per element to count inversions



- Algorithm summary
 - Satisfies the "Standard recurrence"
 - T(n) = 2 T(n/2) + cn

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767 + 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930 X 5920175091777634709677679342929097012308956679993010921

Recursive Multiplication Algorithm (First attempt)

$$x = x_1 2^{n/2} + x_0$$

$$y = y_1 2^{n/2} + y_0$$

$$xy = (x_1 2^{n/2} + x_0) (y_1 2^{n/2} + y_0)$$

$$= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0$$

Recurrence:

Run time:

Simple algebra

$$x = x_1 2^{n/2} + x_0$$

$$y = y_1 2^{n/2} + y_0$$

$$xy = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0$$

$$p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$

Karatsuba's Algorithm

Multiply n-digit integers x and y

Let
$$x = x_1 2^{n/2} + x_0$$
 and $y = y_1 2^{n/2} + y_0$
Recursively compute $a = x_0 y_0$

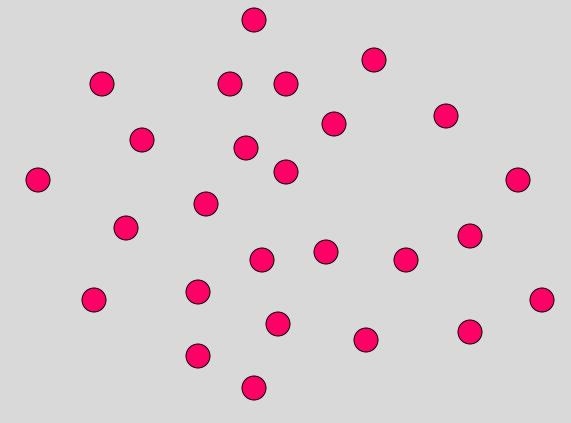
$$a = x_1y_1$$

 $b = x_0y_0$
 $p = (x_1 + x_0)(y_1 + y_0)$
Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: T(n) = 3T(n/2) + cn

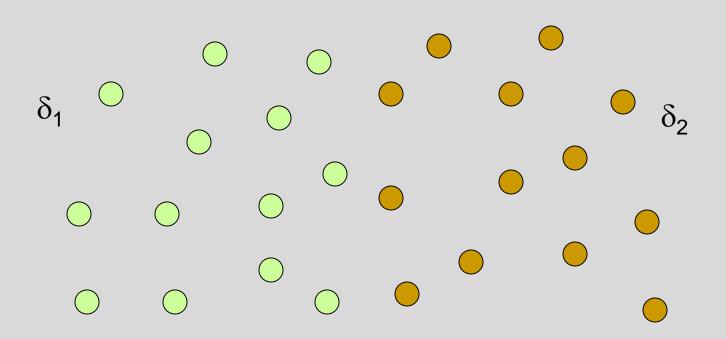
Closest Pair Problem (2D)

Given a set of points find the pair of points p,
 q that minimizes dist(p, q)



Divide and conquer

 If we solve the problem on two subsets, does it help? (Separate by median x coordinate)



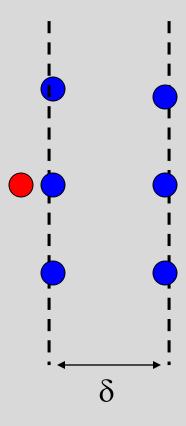
Packing Lemma

Suppose that the minimum distance between points is at least δ , what is the maximum number of points that can be packed in a ball of radius δ ?

Combining Solutions

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

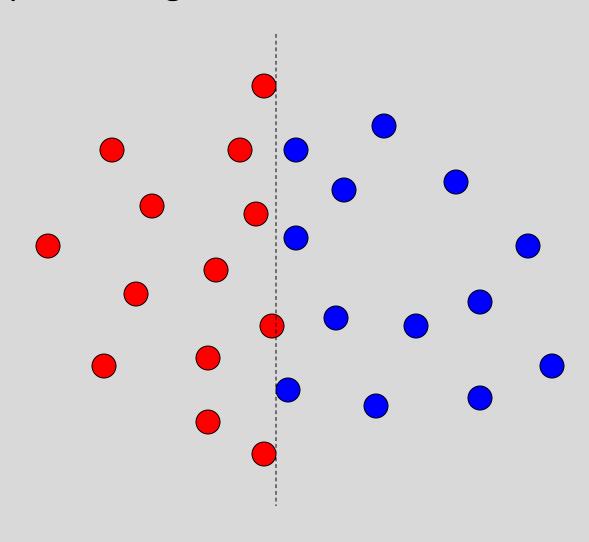
A packing lemma bounds the number of distances to check



Details

- Preprocessing: sort points by y
- Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - Find highest point on the other side that is at most δ above
 - Find lowest point on the other side that is at most δ below
 - Compare with the points in this interval (there are at most 6)

Identify the pairs of points that are compared in the merge step following the recursive calls



Algorithm run time

After preprocessing:

$$-T(n) = cn + 2T(n/2)$$