CSE 417 Algorithms and Complexity Winter 2023 Lecture 17 Divide and Conquer

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 - The bottom level wins
- Geometrically decreasing (x < 1)
 - The top level wins
- Balanced (x = 1)
 - Equal contribution

11/6/2023

CSE 417

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$

023 CSE 417

Divide and Conquer

- Algorithm paradigm
 - Break problems into subproblems until easy to solve
 - Work is split between "divide", "combine", and "base" components
- Standard examples
 - MergeSort and QuickSort
- · Analysis tool: Recurrences

11/6/2023

CSE 417

Matrix Multiplication

• N X N Matrix, A B = C

11/6/2023

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: | r s | a b | e g | | t u | = | c d | f h |

r = ae + bfs = ag + bht = ce + dfu = cg + dh ANxN matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices

Recursive Matrix Multiplication

- · How many recursive calls are made at each level?
- · How much work in combining the results?
- · What is the recurrence?

CSE 417

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:

Strassen's Algorithm

Where: Multiply 2 x 2 Matrices: $p_1 = (b - d)(f + h)$

 $r = p_1 + p_2 - p_4 + p_6$

 $s = p_4 + p_5$

 $p_2 = (a + d)(e + h)$

 $p_3 = (a - c)(e + g)$

 $p_4 = (a + b)h$ $p_5 = a(g - h)$

 $p_6 = d(f - e)$

 $t = p_6 + p_7$ $u = p_2 - p_3 + p_5 - p_7$ $p_7 = (c + d)e$

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- · What is the runtime?

CSE 417

Strassen's Algorithms

- Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
- Use Strassen's trick to multiply 2 x 2 matrices with 7
- Base case standard multiplication for single entries
- Recurrence: $T(n) = 7 T(n/2) + cn^2$
- Solution is O(7^{log n})= O(n^{log 7}) which is about O(n^{2.807})

Quicksort [Tony Hoare, 1959]

QuickSort(S):

- 1. Pick an element v in **S**. This is the **pivot** value.
- Partition S-{v} into two disjoint subsets, S₁ and S₂ such that:
 - elements in S₁ are all < v
 - elements in S_2 are all > v
- 3. Return concatenation of QuickSort(S₁), v, QuickSort(S₂)

Recursion ends if Quicksort() receives an array of length 0 or 1.

11/6/2023

CSE 417

Computing the Median

- Given n numbers, find the number of rank n/2
- · One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?
- Selection, given n numbers and an integer k, find the k-th largest

11/6/2023

CSE 417

 $Select(A, k) \\ Select(A, k) \\ Choose element x from A \\ S_1 = \{y \text{ in A} | y < x \} \\ S_2 = \{y \text{ in A} | y > x \} \\ S_3 = \{y \text{ in A} | y > x \} \\ S_3 = \{y \text{ in A} | y = x \} \\ \text{if } (|S_2| >= k) \\ \text{return Select}(S_2, k) \\ \text{else if } (|S_2| + |S_3| >= k) \\ \text{return x} \\ \text{else} \\ \text{return Select}(S_1, k - |S_2| - |S_3|) \\ \} \\ \\ S_1 \qquad S_3 \qquad S_2 \\ \\ 11/6/2023 \qquad CSE 417 \qquad 15$

Deterministic Selection

- Random pivot gives an expected O(n) run time. The question of a deterministic algorithm was more challenging.
- What is the run time of select if we can guarantee that *ChoosePivot* finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in O(n) time?

11/6/2023

CSE 417

BFPRT Algorithm

- A very clever choose algorithm . . .
- Deterministic algorithm that guarantees that $|S_1| < 3n/4$ and $|S_2| < 3n/4$
- Actual recurrence is:

11/6/2023

CSE 417

 $|S_1| < 3n/4, |S_2| < 3n/4$

Split into n/5 sets of size 5 M be the set of medians of these sets x be the median of M Construct S_1 and S_2 using pivot x Recursive call in S_1 or S_2

11/6/2023

BFPRT Recurrence

• T(n) <= T(3n/4) + T(n/5) + c n

Prove that T(n) <= 20 c n