

Announcements

- Midterm stats (out of 60)
- Mean: 43.2, Median: 46.25, Std Dev: 9.63

- Today and Wednesday: Divide and Conquer
- Friday: Armistice Day / Veterans Day (almost)

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($\mathrm{x}>1$)
- The bottom level wins
- Geometrically decreasing ($x<1$)
- The top level wins
- Balanced ($\mathrm{x}=1$)
- Equal contribution

Divide and Conquer

- Algorithm paradigm
- Break problems into subproblems until easy to solve
- Work is split between "divide", "combine", and "base" components
- Standard examples
- MergeSort and QuickSort
- Analysis tool: Recurrences

Matrix Multiplication

- N X N Matrix, A B = C
for (int $i=0 ; i<n ; i++)$
for (int $j=0 ; j<n ; j++$) $\{$ int $t=0$; for (int $k=0 ; k<n ; k++$) $\mathrm{t}=\mathrm{t}+\mathrm{A}[\mathrm{i}][\mathrm{k}]$ * $\mathrm{B}[\mathrm{k}][\mathrm{j}]$; C[i][j] = t;
\}

Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $T(n)=n+9 T(n / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $T(n)=n^{3}+7 T(n / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$
\qquad

Recursive Matrix Multiplication

Multiply 2×2 Matrices:
$\begin{array}{ll}\mid r & s \\ \mid t & u\end{array}\left|=\begin{array}{llll}\mid a & b \mid & \mid e & g \mid \\ \mid c & d \mid & \mid f & h\end{array}\right|$
$r=a e+b f$
$s=a g+b h$
$t=c e+d f$
$u=c g+d h$

A $N \times N$ matrix can be viewed as a 2×2 matrix with entries that are $(\mathrm{N} / 2) \times(\mathrm{N} / 2)$ matrices.
The recursive matrix multiplication algorithm recursively multiplies the ($\mathrm{N} / 2$) $\times(\mathrm{N} / 2$) matrices and combines them using the equations for multiplying 2×2 matrices

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:

Strassen's Algorithm

Multiply 2×2 Matrices:
$\mid r$
$|r|$
$\mid t$
$|t|=\left|\begin{array}{lll}\mid a & b \mid & \mid e \\ |c| & g \\ \mid c & d & \mid f\end{array}\right|$
$r=p_{1}+p_{2}-p_{4}+p_{6}$
$s=p_{4}+p_{5}$
$t=p_{6}+p_{7}$

$$
u=p_{2}-p_{3}+p_{5}-p_{7}
$$

Where:

$$
\begin{aligned}
& p_{1}=(b-d)(f+h) \\
& p_{2}=(a+d)(e+h) \\
& p_{3}=(a-c)(e+g) \\
& p_{4}=(a+b) h \\
& p_{5}=a(g-h) \\
& p_{6}=d(f-e) \\
& p_{7}=(c+d) e
\end{aligned}
$$

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen's Algorithms

- $T(n)=7 T(n / 2)+n^{2}$
- What is the runtime?

Strassen's Algorithms

- Treat $\mathrm{n} \times \mathrm{n}$ matrices as 2×2 matrices of $\mathrm{n} / 2 \times \mathrm{n} / 2$ submatrices
- Use Strassen's trick to multiply 2×2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n)=7 T(n / 2)+c n^{2}$
- Solution is $\mathrm{O}\left(7^{\log n}\right)=\mathrm{O}\left(n^{\log 7}\right)$ which is about $\mathrm{O}\left(n^{2.807}\right)$

Quicksort [Tony Hoare, 1959]

QuickSort(S):

1. Pick an element v in \mathbf{S}. This is the pivot value.
2. Partition S-\{v\} into two disjoint subsets, \mathbf{S}_{1} and \mathbf{S}_{2} such that:

- elements in \mathbf{S}_{1} are all < v
- elements in \mathbf{S}_{2} are all $>v$

3. Return concatenation of QuickSort($\left.\mathbf{S}_{1}\right), v$, QuickSort $\left(\mathbf{S}_{2}\right)$

Recursion ends if Quicksort() receives an array of length 0 or 1.

Select(A, k)

Select(A, k)\{
Choose element x from A
$S_{1}=\{y$ in $A \mid y<x\}$
$S_{2}=\{y$ in $A \mid y>x\}$
$S_{3}=\{y$ in $A \mid y=x\}$
if $\left(\left|S_{2}\right|>=k\right)$
return Select $\left(\mathrm{S}_{2}, \mathrm{k}\right)$
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$
return x
else
return Select($\left.\mathrm{S}_{1}, \mathrm{k}-\left|\mathrm{S}_{2}\right|-\left|\mathrm{S}_{3}\right|\right)$
\}

Select(A, k)								
Select(A, k) \{								
	Choose element x from $A$$S_{1}=\{y$ in $A \mid y<x\}$							
$\mathrm{S}_{1}=\{y$ in $A \mid y<x\}$								
$\mathrm{S}_{3}=\{y \text { in } \mathrm{A} \mid \mathrm{y}=\mathrm{x}\}$								
if ($\left\|S_{2}\right\|>=k$) return Select($\left.\mathrm{S}_{2}, \mathrm{k}\right)$								
else if $\left(\left\|S_{2}\right\|+\left\|S_{3}\right\|>=k\right)$ return x								
return Select($\left.\mathrm{S}_{1}, \mathrm{k}-\left\|\mathrm{S}_{2}\right\|-\left\|\mathrm{S}_{3}\right\|\right)$								
	S_{1}	S_{3}	S_{2}					
${ }_{11 / 6 / 2023}$ CSE 417 ${ }^{\text {c }}$								

BFPRT Algorithm

- A very clever choose algorithm . . .
- Deterministic algorithm that guarantees that $\left|S_{1}\right|<3 n / 4$ and $\left|S_{2}\right|<3 n / 4$
- Actual recurrence is:

$$
T(n) \leq T(3 n / 4)+T(n / 5)+c n
$$

Computing the Median

- Given n numbers, find the number of rank $\mathrm{n} / 2$
- One approach is sorting
- Sort the elements, and choose the middle one
- Can you do better?
- Selection, given n numbers and an integer k, find the k-th largest

Deterministic Selection

- Random pivot gives an expected $O(n)$ run time. The question of a deterministic algorithm was more challenging.
- What is the run time of select if we can guarantee that ChoosePivot finds an x such that $\left|S_{1}\right|<3 n / 4$ and $\left|S_{2}\right|<3 n / 4$ in $O(n)$ time?

BFPRT Algorithm

$\left|S_{1}\right|<3 n / 4,\left|S_{2}\right|<3 n / 4$
Split into $n / 5$ sets of size 5
M be the set of medians of these sets x be the median of M
Construct S_{1} and S_{2} using pivot x
Recursive call in S_{1} or S_{2}

BFPRT Recurrence
$\cdot T(n)<T(3 n / 4)+T(n / 5)+c n$
Provemat $(T) \ll 200 n$

