CSE 417
Algorithms and Complexity

Announcements

* Midterm stats (out of 60)
— Mean: 43.2, Median: 46.25, Std Dev: 9.63

* Today and Wednesday: Divide and Conquer
* Friday: Armistice Day / Veterans Day (almost)

What you really need to know about
recurrences

* Work per level changes geometrically with the
level

* Geometrically increasing (x > 1)
— The bottom level wins

* Geometrically decreasing (x < 1)
— The top level wins

* Balanced (x = 1)

— Equal contribution

Classify the following recurrences
(Increasing, Decreasing, Balanced)

« T(n) = n +5T(n/8)
« T(n) = n +9T(n/8)
« T(n) = n2+4T(n/2)
« T(n)=n3+7T(n/2)

* T(n) =n'2+3T(n/4)

Divide and Conquer

* Algorithm paradigm
— Break problems into subproblems until easy to
solve

— Work is split between “divide”, “combine”, and
“base”” components

* Standard examples
— MergeSort and QuickSort
* Analysis tool: Recurrences

Matrix Multiplication

* NXN Matrix, AB=C

for (int i = 0; i < n; i++)
for (int j = 0; 3j < n; j++) {
int t = 0;
for (int k = 0; k < n; k++)
t =t + A[i][k] * B[k][]];
CLil[3] = ¢;




Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: AN x N matrix can be viewed as
|Ir s|_|a b] |[e g| a 2 x 2 matrix with entries that
| t u | - | c dl | f h| are (N/2) x (N/2) matrices.
The recursive matrix
= ae + bf multiplication algorithm
=ag+ bh recursively multiplies the

= @6l (N/2) x (N/2) matrices and

- combines them using the

= cg+dh equations for multiplying 2 x 2
matrices

c T wn -

Recursive Matrix Multiplication

* How many recursive calls are

made at each level?

* How much work in

combining the results?

* What is the recurrence?

What is the run time for the recursive Matrix
Multiplication Algorithm?

* Recurrence:

Strassen’s Algorithm

Multiply 2 x 2 Matrices:
[r s|_la b| le g
|t ul Jc d |f h|

r=p;+P,—PstPs
S=PpstPs
t=pe+p;
U=p;-P3+Ps-p7

Where:

p, = (b—d)(f+h)
p,=(a+d)(e +h)
p;=(a-cj)(e+g)
ps=(a+b)h
ps=a(g—h)
ps=d(f-e)
p;=(c+d)e

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen’s Algorithms

* T(n)=7T(n/2) + cn?
* What is the runtime?

logj, 7 = 2.8073549221

Strassen’s Algorithms

* Treat n x n matrices as 2 x 2 matrices of n/2 x n/2

submatrices

* Use Strassen’s trick to multiply 2 x 2 matrices with 7

multiplies

* Base case standard multiplication for single entries

* Recurrence: T(n) =7 T(n/2) + cn?
* Solution is O(7'°8")= O(n'°87) which is about O(n227)




Quicksort [Tony Hoare, 1959]

QuickSort(S):
1. Pick anelementvinS. Thisis the pivot value.

2. Partition S-{v} into two disjoint subsets, S, and S, such
that:

* elementsinS,areall<v
* elementsinS,areall >v
3. Return concatenation of QuickSort(S,), v, QuickSort(S,)

Recursion ends if Quicksort( ) receives an array of length 0 or 1.

Select(A, k)

Select(A, kY
Choose element x from A
S;={yinAly<x}
S,={yinAly>x}
Sy={yinAly=x}
if (1S, >= k)
return Select(S,, k)
else if (IS, + [Sa| >= k)
return x
else
return Select(Sy, k - |S,| - [S3l)

S, | S5 | s,

BFPRT Algorithm

* A very clever choose algorithm . . .

» Deterministic algorithm that guarantees
that |S;| <3n/4and |S,| <3n/4

¢ Actual recurrence is:

T(n) < T(3n/4) + T(n/5) + cn

Computing the Median

* Given n numbers, find the number of rank n/2
* One approach is sorting

— Sort the elements, and choose the middle one
— Can you do better?

* Selection, given n numbers and an integer k,
find the k-th largest

Deterministic Selection

* Random pivot gives an expected O(n) run
time. The question of a deterministic
algorithm was more challenging.

* What is the run time of select if we can
guarantee that ChoosePivot finds an x such
that |S;| <3n/4 and |S,| <3n/4 in O(n) time?

BFPRT Algorithm
IS,| < 3n/4, |S,| < 3n/4

Split into n/5 sets of size 5

M be the set of medians of these sets
X be the median of M

Construct S; and S, using pivot x
Recursive callin S; or S,



http://en.wikipedia.org/wiki/File:VaughanPratt.JPG

BFPRT Recurrence

* T(n) <=T(3n/4) + T(n/5) +cn

Prqve that T(n) <=20cn




