CSE 417 Algorithms and Complexity

Winter 2023 Lecture 17 Divide and Conquer

Announcements

• Midterm stats (out of 60)

– Mean: 43.2, Median: 46.25, Std Dev: 9.63

- Today and Wednesday: Divide and Conquer
- Friday: Armistice Day / Veterans Day (almost)

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)

– The bottom level wins

Geometrically decreasing (x < 1)

– The top level wins

- Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$

Divide and Conquer

- Algorithm paradigm
 - Break problems into subproblems until easy to solve
 - Work is split between "divide", "combine", and "base" components
- Standard examples
 - MergeSort and QuickSort
- Analysis tool: Recurrences

Matrix Multiplication

• N X N Matrix, A B = C

```
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
    int t = 0;
    for (int k = 0; k < n; k++)
        t = t + A[i][k] * B[k][j];
        C[i][j] = t;
}</pre>
```

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: | r s | = | a b | | e g || t u | = | c d | | f h |

$$r = ae + bf$$

$$s = ag + bh$$

$$t = ce + df$$

$$u = cg + dh$$

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are $(N/2) \times (N/2)$ matrices.

The recursive matrix multiplication algorithm recursively multiplies the $(N/2) \times (N/2)$ matrices and combines them using the equations for multiplying 2 x 2 matrices

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:

Strassen's Algorithm

Multiply 2 x 2 Matrices: $\begin{vmatrix} r & s \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix} \begin{vmatrix} e & g \end{vmatrix}$ $\begin{vmatrix} t & u \end{vmatrix} = \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} f & h \end{vmatrix}$ $r = p_1 + p_2 - p_4 + p_6$ $s = p_4 + p_5$ $t = p_6 + p_7$ $u = p_2 - p_3 + p_5 - p_7$

Where:

- $p_1 = (b d)(f + h)$ $p_2 = (a + d)(e + h)$ $p_3 = (a - c)(e + g)$
- $p_3 = (a c)(e + g)$

$$p_4 = (a + b)h$$

$$p_5 = a(g - h)$$

$$p_6 = d(f - e)$$

$$p_7 = (c + d)\epsilon$$

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- What is the runtime?

Strassen's Algorithms

- Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
- Use Strassen's trick to multiply 2 x 2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n) = 7 T(n/2) + cn^2$
- Solution is $O(7^{\log n}) = O(n^{\log 7})$ which is about $O(n^{2.807})$

Quicksort [Tony Hoare, 1959]

QuickSort(S):

- 1. Pick an element v in **S**. This is the *pivot* value.
- Partition S-{v} into two disjoint subsets, S₁ and S₂ such that:
 - elements in S₁ are all < v
 - elements in \mathbf{S}_2 are all > v
- 3. Return concatenation of QuickSort(**S**₁), *v*, QuickSort(**S**₂)

Recursion ends if Quicksort() receives an array of length 0 or 1.

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?
- *Selection,* given n numbers and an integer k, find the k-th largest

Select(A, k)

```
Select(A, k){

Choose element x from A

S_1 = \{y \text{ in } A \mid y < x\}

S_2 = \{y \text{ in } A \mid y > x\}

S_3 = \{y \text{ in } A \mid y = x\}

if (|S_2| \ge k)

return Select(S<sub>2</sub>, k)

else if (|S_2| + |S_3| \ge k)

return x

else

return Select(S<sub>1</sub>, k - |S<sub>2</sub>| - |S<sub>3</sub>|)

}
```

Deterministic Selection

- Random pivot gives an expected O(n) run time. The question of a deterministic algorithm was more challenging.
- What is the run time of select if we can guarantee that *ChoosePivot* finds an x such that |S₁| < 3n/4 and |S₂| < 3n/4 in O(n) time?

BFPRT Algorithm

- 1986
- A very clever choose algorithm . . .

• Deterministic algorithm that guarantees that $|S_1| < 3n/4$ and $|S_2| < 3n/4$

• Actual recurrence is:

 $T(n) \le T(3n/4) + T(n/5) + c n$

BFPRT Algorithm

 $|S_1| < 3n/4, |S_2| < 3n/4$

Split into n/5 sets of size 5 M be the set of medians of these sets x be the median of M Construct S_1 and S_2 using pivot x Recursive call in S_1 or S_2

BFPRT Recurrence

• $T(n) \le T(3n/4) + T(n/5) + c n$

