
CSE 417
Algorithms and Complexity

Winter 2023
Lecture 17

Divide and Conquer

11/6/2023 CSE 417 1



Announcements

• Midterm stats (out of 60)
– Mean: 43.2,  Median: 46.25, Std Dev: 9.63

• Today and Wednesday:  Divide and Conquer

• Friday:  Armistice Day / Veterans Day (almost)

11/6/2023 CSE 417 2



What you really need to know about 
recurrences

• Work per level changes geometrically with the 
level

• Geometrically increasing (x > 1)

– The bottom level wins

• Geometrically decreasing  (x < 1)

– The top level wins

• Balanced (x = 1)

– Equal contribution

11/6/2023 CSE 417 3



Classify the following recurrences
(Increasing, Decreasing, Balanced)

• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)

11/6/2023 CSE 417 4



Divide and Conquer

• Algorithm paradigm

– Break problems into subproblems until easy to 
solve

– Work is split between “divide”, “combine”, and 
“base’’ components

• Standard examples

– MergeSort and QuickSort

• Analysis tool: Recurrences

11/6/2023 CSE 417 5



Matrix Multiplication

• N X N Matrix,   A B = C

for (int i = 0; i < n; i++)

for (int j = 0;  j < n; j++) {

int t = 0;

for (int k = 0; k < n; k++)

t = t + A[i][k] * B[k][j];

C[i][j] = t;

}

11/6/2023 CSE 417 6



Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t    u |    | c    d|   | f    h|

r  = ae + bf

s  = ag + bh

t  =  ce + df

u = cg + dh

A N x N matrix can be viewed as 

a 2 x 2 matrix with entries that 

are (N/2) x (N/2) matrices. 

The recursive matrix 

multiplication algorithm 

recursively multiplies the       

(N/2) x (N/2) matrices and 

combines them using the 

equations for multiplying 2 x 2 

matrices

=

11/6/2023 CSE 417 7



Recursive Matrix Multiplication

• How many recursive calls are 
made at each level?

• How much work in 
combining the results?

• What is the recurrence?

11/6/2023 CSE 417 8



What is the run time for the recursive Matrix 
Multiplication Algorithm?

• Recurrence:

11/6/2023 CSE 417 9



Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r     s|    |a    b|   |e    g|

| t     u|    |c    d|   |f     h|
=

r = p1 + p2 – p4 + p6

s = p4 + p5

t = p6 + p7

u = p2 - p3 + p5 - p7

Where:

p1 = (b – d)(f + h)

p2 = (a + d)(e + h)

p3 = (a – c)(e + g)

p4 = (a + b)h

p5 = a(g – h)

p6 = d(f – e)

p7 = (c + d)e

From Aho, Hopcroft, Ullman 1974
11/6/2023 CSE 417 10



Recurrence for Strassen’s Algorithms

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

log2 7 = 2.807354922111/6/2023 CSE 417 11



Strassen’s Algorithms

• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 
submatrices

• Use Strassen’s trick to multiply 2 x 2 matrices with 7 
multiplies

• Base case standard multiplication for single entries

• Recurrence:  T(n) = 7 T(n/2) + cn2

• Solution is O(7log n)= O(nlog 7) which is about O(n2.807)

11/6/2023 CSE 417 12



Quicksort  [Tony Hoare, 1959]

QuickSort(S):
1. Pick an element v in S.  This is the pivot value.
2. Partition S-{v} into two disjoint subsets, S1 and S2 such 

that:
• elements in S1 are all < v
• elements in S2 are all > v

3. Return concatenation of QuickSort(S1), v, QuickSort(S2)

Recursion ends if Quicksort( ) receives an array of length 0 or 1.

11/6/2023 CSE 417 13



Computing the Median

• Given n numbers, find the number of rank n/2

• One approach is sorting

– Sort the elements, and choose the middle one

– Can you do better?

• Selection, given n numbers and an integer k, 
find the k-th largest

11/6/2023 CSE 417 14



Select(A, k)

Select(A, k){

Choose element x from A

S1 = {y in A | y < x}

S2 = {y in A | y > x}

S3 = {y in A | y = x}

if (|S2| >= k)

return Select(S2, k)

else if (|S2| + |S3| >= k)

return x

else

return Select(S1, k - |S2| - |S3|)

}

S1 S3 S2

11/6/2023 CSE 417 15



Deterministic Selection

• Random pivot gives an expected O(n) run 
time.  The question of a deterministic 
algorithm was more challenging.

• What is the run time of select if we can 
guarantee that ChoosePivot finds an x such 
that |S1| < 3n/4 and |S2| < 3n/4 in O(n) time?

11/6/2023 CSE 417 16



BFPRT Algorithm

• A very clever choose algorithm . . . 

• Deterministic algorithm that guarantees 
that  |S1| < 3n/4 and |S2| < 3n/4

• Actual recurrence is:

1978

19951986

2002

T(n) ≤ T(3n/4) + T(n/5) + c n

11/6/2023 CSE 417 17

http://en.wikipedia.org/wiki/File:VaughanPratt.JPG


BFPRT Algorithm

|S1| < 3n/4, |S2| < 3n/4

Split into n/5 sets of size 5

M be the set of medians of these sets

x be the median of M

Construct S1 and S2 using pivot x

Recursive call in S1 or S2

11/6/2023 CSE 417 18



BFPRT Recurrence

• T(n) <= T(3n/4) + T(n/5) + c n

Prove that T(n) <= 20 c n
11/6/2023 CSE 417 19


