CSE 417 Algorithms and Complexity

Autumn 2023
Lecture 16
Divide and Conquer and Recurrences

Divide and Conquer

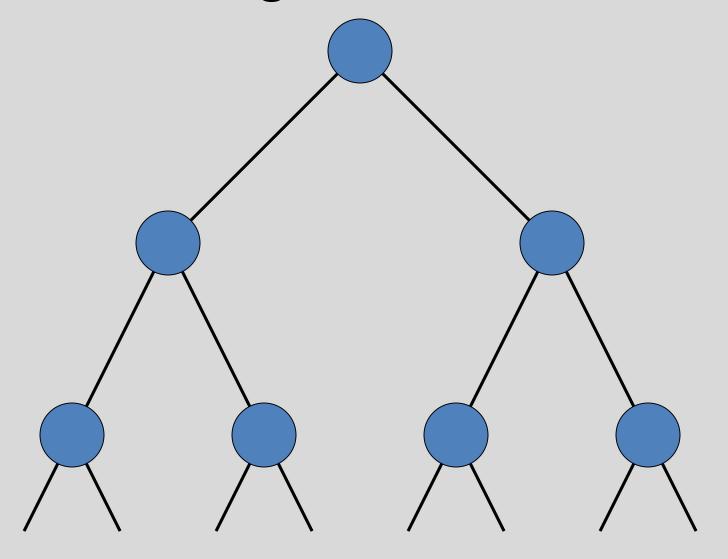
- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Median (Selection)
 - Fast Matrix Multiplication
 - Counting Inversions (5.3)
 - Multiplication (5.5)

Divide and Conquer: Merge Sort

```
Array MSort(Array a, int n){
    if (n <= 1) return a;
    return Merge(MSort(a[0 .. n/2], n/2), MSort(a[n/2+1 .. n-1], n/2);
}</pre>
```

$$T(n) = 2T(n/2) + n; T(1) = 1;$$

Unrolling the recurrence



$$T(n) = 2T(n/2) + n; T(1) = 1;$$

Substitution

Prove $T(n) \le n (\log_2 n + 1)$ for $n \ge 1$

Induction – Show P(1) and $\forall_{k < n} P(k) \implies P(n)$

Base Case: $T(1) = 1 = 1 (log_2 1 + 1)$ Induction: Assume $T(n/2) \le n/2 (log_2(n/2) + 1)$

T(n) = 2 T(n/2) + n $\leq 2 n/2 (log_2(n/2) + 1) + n$ $= n (log_2 n - 1 + 1) + n$ $= n (log_2 n + 1)$

$T(n) = aT(n/b) + n^c$

Master Theorem

If $T(n) = aT(n/b) + O(n^d)$ for constants a > 0, b > 1, $d \ge 0$, then

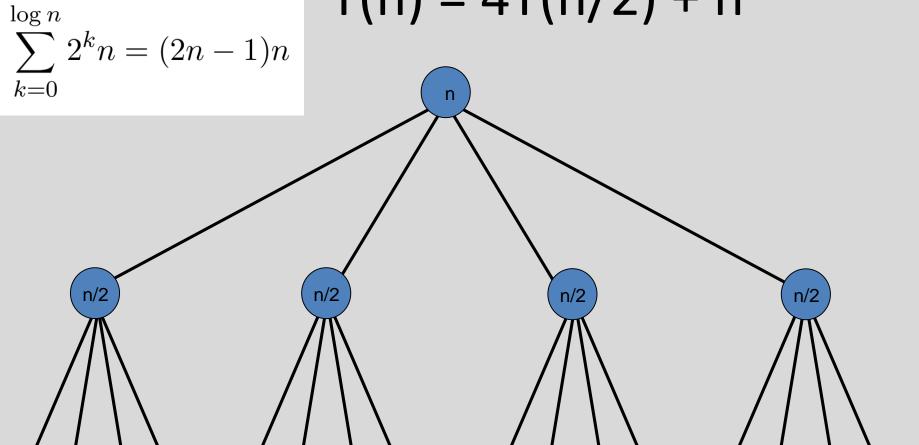
$$T(n) = egin{array}{ll} O(n^d) & ext{if } d > \log_b a \\ O(n^d \log n) & ext{if } d = \log_b a \\ O(n^{\log_b a}) & ext{if } d < \log_b a \end{array}$$

$$T(n) = T(n/2) + cn$$

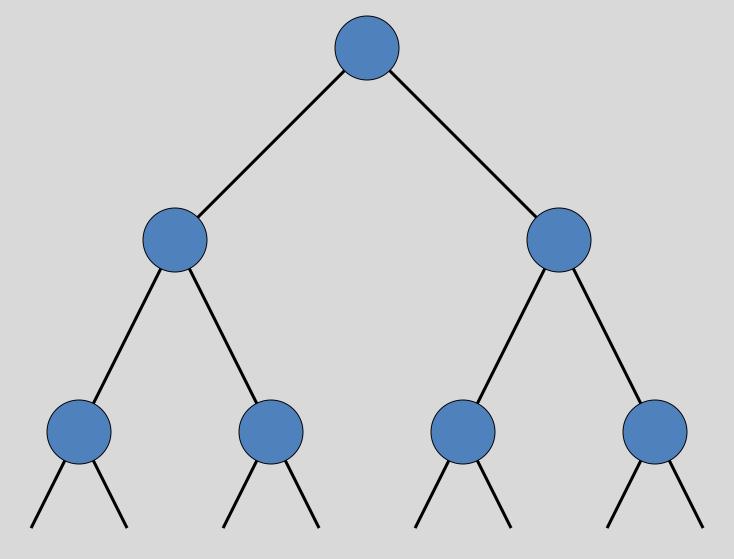
Where does this recurrence arise?

Solving the recurrence exactly

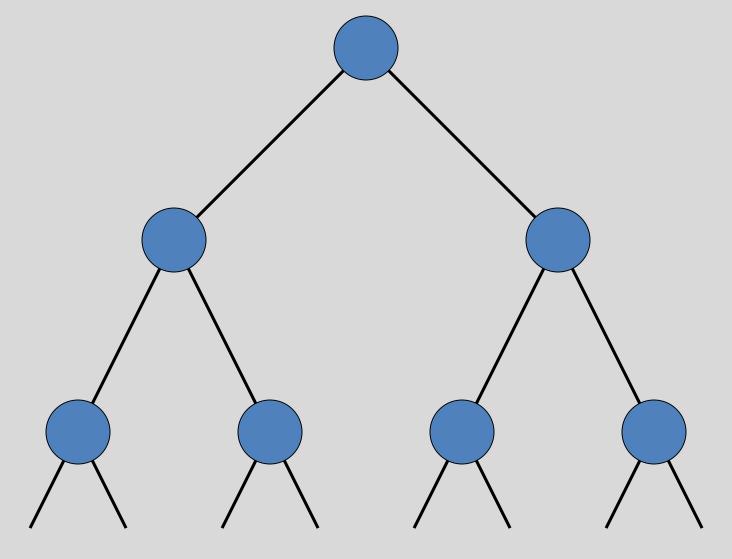
T(n) = 4T(n/2) + n



$$T(n) = 2T(n/2) + n^2$$



$$T(n) = 2T(n/2) + n^{1/2}$$



Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

Geometric Sum

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 - The bottom level wins
- Geometrically decreasing (x < 1)
 - The top level wins
- Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

•
$$T(n) = n + 5T(n/8)$$

•
$$T(n) = n + 9T(n/8)$$

•
$$T(n) = n^2 + 4T(n/2)$$

•
$$T(n) = n^3 + 7T(n/2)$$

•
$$T(n) = n^{1/2} + 3T(n/4)$$

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

$$r = ae + bf$$

$$s = ag + bh$$

$$t = ce + df$$

$$u = cg + dh$$

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices

Recursive Matrix Multiplication

 How many recursive calls are made at each level?

 How much work in combining the results?

What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:

Strassen's Algorithm

Multiply 2 x 2 Matrices:

$$\begin{vmatrix} r & s \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix} \begin{vmatrix} e & g \end{vmatrix}$$

 $\begin{vmatrix} t & u \end{vmatrix} = \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} f & h \end{vmatrix}$

$$r = p_1 + p_2 - p_4 + p_6$$

$$s = p_4 + p_5$$

$$t = p_6 + p_7$$

$$u = p_2 - p_3 + p_5 - p_7$$

Where:

$$p_1 = (b - d)(f + h)$$

$$p_2 = (a + d)(e + h)$$

$$p_3 = (a - c)(e + g)$$

$$p_4 = (a + b)h$$

$$p_5 = a(g - h)$$

$$p_6 = d(f - e)$$

$$p_7 = (c + d)e$$

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- What is the runtime?