CSE 417 Algorithms and Complexity

Autumn 2023
Lecture 15
Divide and Conquer and Recurrences

Announcements

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Median (Selection)
 - Fast Matrix Multiplication
 - Counting Inversions (5.3)
 - Multiplication (5.5)

Divide and Conquer: Merge Sort

```
Array Mergesort(Array a){
        n = a.Length;
        if (n <= 1)
                 return a;
        b = Mergesort(a[0 .. n/2]);
        c = Mergesort(a[n/2+1 .. n-1]);
        return Merge(b, c);
```

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$$T(n) = 2T(n/2) + cn; T(1) = c;$$

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

Unrolling the recurrence

$$T(n) = 2T(n/2) + n; T(1) = 1;$$

Substitution

Prove $T(n) \le n (\log_2 n + 1)$ for $n \ge 1$

Induction:

Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for T(n) = 3T(n/3) + n

$$T(n) = aT(n/b) + f(n)$$

$$T(n) = T(n/2) + cn$$

Where does this recurrence arise?

Quicksort

QuickSort(S):

- 1. Pick an element v in **S**. This is the **pivot** value.
- 2. Partition $S-\{v\}$ into two disjoint subsets, S_1 and S_2 such that:
 - elements in S₁ are all < v
 - elements in S_2 are all > v
- 3. Return concatenation of QuickSort(S_1), v, QuickSort(S_2)

Recursion ends if Quicksort() receives an array of length 0 or 1.

The steps of Quicksort

Picking the pivot

- Choose the first element in the subarray
- Choose a value that might be close to the middle
 - Median of three
- Choose a random element

Recurrence for Quicksort

$$QS(n) = \sum_{i=1}^{n} \frac{1}{n} \{ QS(i-1) + QS(n-i) \}$$

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?

Problem generalization

 Selection, given n numbers and an integer k, find the k-th largest

Select(A, k)

```
Select(A, k)\{
Choose element x from A
S_1 = \{y \text{ in } A \mid y < x\}
S_2 = \{y \text{ in } A \mid y > x\}
S_3 = \{y \text{ in } A \mid y = x\}
\text{if } (|S_2| >= k)
\text{return } Select(S_2, k)
\text{else if } (|S_2| + |S_3| >= k)
\text{return } x
\text{else}
\text{return } Select(S_1, k - |S_2| - |S_3|)
\}
```


Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time O(n)

$$T(n) = T(n/2) + cn$$

Where does this recurrence arise?

Solving the recurrence exactly

T(n) = 4T(n/2) + n

$$T(n) = 2T(n/2) + n^2$$

$$T(n) = 2T(n/2) + n^{1/2}$$

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 - The bottom level wins
- Geometrically decreasing (x < 1)
 - The top level wins
- Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

•
$$T(n) = n + 5T(n/8)$$

•
$$T(n) = n + 9T(n/8)$$

•
$$T(n) = n^2 + 4T(n/2)$$

•
$$T(n) = n^3 + 7T(n/2)$$

•
$$T(n) = n^{1/2} + 3T(n/4)$$