

Announcements

- Midterm, Monday, October 30
- Closed book, closed notes, no calculators
- Time limit: 50 minutes
- Answer the problems on the exam paper.
- If you need extra space use the overflow page (and the back of a page if necessary)
- Problems are not of equal difficulty, if you get stuck on a problem, move on.
- "Justify your answer" means give a short and convincing explanation. Depending on the situation, justifications can involve counter examples, or cite results established in the text or in lecture.
- Homework 5, Available, Due November 3
- Homework 5 is OPTIONAL

Minimum Spanning Tree

Application: Clustering

- Given a collection of points in an r dimensional space and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets

$$
-\operatorname{dist}\left(S_{1}, S_{2}\right)=\min \left\{\operatorname{dist}(x, y) \mid x \text { in } S_{1}, y \text { in } S_{2}\right\}
$$

Distance Clustering Algorithm

```
Let C = {{\mp@subsup{v}{1}{}},{\mp@subsup{v}{2}{}},\ldots.,{\mp@subsup{v}{n}{}}};T={}
while |C| > K
```

Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Finding a minimum branching

Idea for branching algorithm

- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat

Homework 5: Create a program for coloring random graphs

- Optional - this assignment is Just for fun!
- Problem 1: Generate Random Graphs
- Problem 2: Greedy coloring algorithm - first available color
- Problem 3: Low degree first and high degree first heuristics
- Problem 4: Can you find a better coloring algorithm

Random Graphs

- What is a random graph?
- Choose edges at random
- Interesting model of certain phenomena
- Mathematical study
- Useful inputs for graph algorithms

Model of Random Graphs

- Undirected Graphs
- Random Graph with n vertices and m edges, G_{m}
- Random Graph with n vertices where each edge has probability p, G_{p}
- Models are similar when $p=2 m /\left(n^{*}(n-1)\right)$

$$
\text { for (int } i=0 ; i<n-1 ; i++ \text {) }
$$

for (int $j=i+1 ; j<n ; j++$)
if (random.NextDouble() < p)
AddEdge (i, j) ;

Coloring Random Graphs

- Chromatic index of a graph $\mathrm{G}, \chi(\mathrm{G})$ - minimum number of colors needed to color G
- Mathematical question, given a graph g chosen at random from $\mathrm{G}_{\mathrm{p}}(\mathrm{n})$, what is the expected value of $\chi(\mathrm{g})$
- Graph coloring is NP complete - suggesting that it may be hard to determine $\chi(\mathrm{g})$
- There is a fairly large gap between the heuristic results and the theoretical value
- There are a number of ties with theoretical physics

