CSE 417
Algorithms and Complexity

Announcements
« Midterm, Monday, October 30

* Topics: Material Presented in Lecture
— Stable Matching

— Graphs and simple graph algorithms
* Breadth First Search
* Topological Sort
— Greedy Algorithms
* Interval Scheduling Problems
e Graph Coloring

— Shortest Paths Algorithms
— Minimum Spanning Tree Algorithms

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning
Tree

* Prim’s Algorithm:
Extend a tree by
including the cheapest
out going edge

e Kruskal’s Algorithm:
Add the cheapest edge
that joins disjoint
components

Greedy Algorithm 1
Prim’s Algorithm

* Extend a tree by including the cheapest out
going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order, of insertion

Greedy Algorithm 2
Kruskal’s Algorithm

* Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal’s
algorithm

Label the edges in
order, of insertion

Why do the greedy algorithms work?

* For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

e LetS be a subset of V, and suppose e =(u, v) is
the minimum cost edge of E, with uin Sand v

in V-S
e eisin every minimum spanning tree of G

— Or equivalently, if eis not in T, then T is not a
minimum spanning tree

e IS the minimum cost edge
between S and V-S

Proof

e Suppose T is a spanning tree that does not contain e
 Add e to T, this creates a cycle

* The cycle must have some edge e, = (u,, v;) with u, in Sand v,
in V-S

* T,=T-{e,}+{e}is aspanning tree with lower cost
* Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
e Kruskal’s Algorithm computes a MST

 Show that when an edge is added to the MST
by Prim or Kruskal, the edge is the minimum
cost edge between S and V-S for some set S.

Prim’s Algorithm

S={a} T={}
while S 1=V

choose the minimum cost edge
e=(uVv),withuins, andvin V-S

addeto T
addvto S

Prove Prim’s algorithm computes an MST

 Show an edge e is in the MST when it is added
toT

Kruskal’s Algorithm

Let C = {{v,}, {vo}, . . ., {vp}li T={}
while |C| > 1

Lete = (u, v) with uin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C; and C; by C; U C,
Addeto T

Prove Kruskal’s algorithm computes an
MST

 Show an edge e is in the MST when it is added
toT

MST Implementation and runtime

* Prim’s Algorithm
— Implementation, runtime: just like Dijkstra’s
algorithm

— Use a heap, runtime O(m log n)

e Kruskal’s Algorithm
— Sorting edges by cost: O(m log n)
— Managing connected components uses the Union-
Find data structure
* Amazing, pointer based data structure
* Very interesting mathematical result

Disjoint Set ADT

Data: set of pairwise disjoint sets.

Required operations
— Union — merge two sets to create their union
— Find — determine which set an item appears in

Check Find(v) # Find(w) to determine if (v,w) joins
separate components

Do Union(v,w) to merge sets

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

Initial state ‘ ‘ ‘ ‘ ‘ ‘ ‘

ISr;;et;mediate ‘\ ‘ A
@ /0 (4
®

Roots are the names of each set.

