Lecture13

CSE 417 Algorithms and Complexity

Autumn 2023 Lecture 13 Minimum Spanning Trees

10/24/2023 CSE 417

Announcements

- Midterm, Monday, October 30
- Topics: Material Presented in Lecture
 - Stable Matching
 - Graphs and simple graph algorithms
 - · Breadth First Search
 - Topological Sort
 - Greedy Algorithms
 - · Interval Scheduling Problems
 - · Graph Coloring
 - Shortest Paths Algorithms
 - Minimum Spanning Tree Algorithms

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- Prim's Algorithm:
 Extend a tree by including the cheapest out going edge
- Kruskal's Algorithm:
 Add the cheapest edge that joins disjoint components

Greedy Algorithm 1 Prim's Algorithm

 Extend a tree by including the cheapest out going edge

Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order of insertion

Greedy Algorithm 2 Kruskal's Algorithm

Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm

Label the edges in order of insertion

Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree

10/24/2023

- 8

e is the minimum cost edge between S and V-S

Proof

- Suppose T is a spanning tree that does not contain e
- · Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S

- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- · Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prove Prim's algorithm computes an MST

Show an edge e is in the MST when it is added

12

O(mlog m)

Let C = $\{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}\}; T = \{\}$

while |C| > 1

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_i by C_i U C_i

Add e to T

10/24/2023

if e; joins distinct compounts jorsed by e

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

MST Implementation and runtime

- Prim's Algorithm
 - Implementation, runtime: just like Dijkstra's algorithm
 - Use a heap, runtime O(m log n)
- Kruskal's Algorithm
 - Sorting edges by cost: O(m log n)
 - Managing connected components uses the Union-Find data structure
 - Amazing, pointer based data structure
 - Very interesting mathematical result

Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
 - Union merge two sets to create their union
 - Find determine which set an item appears in
- Check Find(v) ≠ Find(w) to determine if (v,w) joins separate components
- Do Union(v,w) to merge sets

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an **up-tree**.

