10/25/23, 3:42 PM Lecture13

Lecture13

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 1/18

10/25/23, 3:42 PM Lecture13

Announcements
« Midterm, Monday, October 30

* Topics: Material Presented in Lecture
— Stable Matching

— Graphs and simple graph algorithms
* Breadth First Search
+ Topological Sort

— Greedy Algorithms
* Interval Scheduling Problems
* Graph Coloring

— Shortest Paths Algorithms
— Minimum Spanning Tree Algorithms

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 2/18

10/25/23, 3:42 PM Lecture13

Minimum Spanning Tree

15
6
9
10
21
)
22
16
10/24/2023 CEE 417 3

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 3/18

10/25/23, 3:42 PM Lecture13

Greedy Algorithms for Minimum Spanning
Tree

* Prim’s Algorithm:
Extend a tree by
including the cheapest
out going edge

* Kruskal’s Algorithm:
Add the cheapest edge
that joins disjoint
components

10024520273 ZEE 417 4

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 4/18

10/25/23, 3:42 PM Lecture13

Greedy Algorithm 1
Prim’s Algorithm

* Extend a tree by including the cheapest out
going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order,of insertion

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 5/18

10/25/23, 3:42 PM Lecture13

Greedy Algorithm 2
Kruskal’s Algorithm

* Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal's
algorithm

Label the edges in
order,of insertion

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 6/18

10/25/23, 3:42 PM Lecture13

Why do the greedy algorithms work?

* For simplicity, assume all edge costs are

distinct
Show sV e

'!ﬂe’fl[%-l::k)wk SRR @Jﬂ"rﬂ MST

10024520273

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 7/18

10/25/23, 3:42 PM Lecture13

Edge inclusion lemma

* Let S be asubset of V, and suppose e = (u, v) is
the minimum cost edge of E, withuinSandv

in V-S
* eisinevery minimum spanning tree of G

— Or equivalently, ifeisnotin T, then T is not a
minimum spanning tree

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 8/18

10/25/23, 3:42 PM Lecture13

e is the minimum cost edge
between S and V-S

Proof

* Suppose T is a spanning tree that does not contain e 7
* AddetoT, this creates a cycle

* The cycle must have some edge e, = (u,, v;) with u; in S and v,
in V-S

+ T,=T—{e;}+{e}is aspanning tree with lower cost
* Hence, T is not a minimum spanning tree

10024520273 CSE T g

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 9/18

10/25/23, 3:42 PM Lecture13

Optimality Proofs

* Prim’s Algorithm computes a MST
* Kruskal’s Algorithm computes a MST

* Show that when an edge is added to the MST
by Prim or Kruskal, the edge is the minimum
cost edge between S and V-S for some set S.

https://courses.cs.washington.edu/courses/cse417/23aul/lectures/Lecture12/Lecture13.html

10/18

10/25/23, 3:42 PM Lecture13

Prim’s Algorith ~

={} \}

choose the minimum cost edge

/ e = (uv), with uin S, and v in V- @
Q_ addetoT SR OK\Oj

add n\’\‘@

10024520273 CSE T 11

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 11/18

10/25/23, 3:42 PM Lecture13

Prove Prim’s algorithm computes an MST

* Show an edge e is in the MST when it is added
toT

10024520273 12

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 12/18

10/25/23, 3:42 PM Lecture13

Kruskal’s Algorit

Let C={{vi}. {va}. vl T=A{1}
while |C| > 1

\ AN
Let e = (u, v) with u in C, and v in C, be the @Kw\ 005 \

minimum cost edge joining distinct sets in C

Replace C; and C; by C, U C, / %
Addeto T @
) oo Lo
Sore, @Be G T gi{}%
CUs\“

Cﬁ%* *[’/f:f \,, ;LD m >{91r3'w> (/@NW
T €T YOI e pred b9 &

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 13/18

10/25/23, 3:42 PM Lecture13

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 14/18

10/25/23, 3:42 PM Lecture13

MST Implementation and runtime

* Prim’s Algorithm
— Implementation, runtime: just like Dijkstra’s
algorithm

— Use a heap, runtime O(m log n)

* Kruskal’s Algorithm
— Sorting edges by cost: O(m log n)

— Managing connected components uses the Union-
Find data structure

* Amazing, pointer based data structure
* Very interesting mathematical result

https://courses.cs.washington.edu/courses/cse417/23aul/lectures/Lecture12/Lecture13.html

15/18

10/25/23, 3:42 PM Lecture13

Disjoint Set ADT |¢

* Data: set of pairwise disjoint sets.

* Required operations
— Union — merge two sets to create their union

— Find — determine which set an item appears in

Check Find(v) # Find(w) to determine if (v,w) joins
separate components

* Do Union(v,w) to merge sets

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 16/18

10/25/23, 3:42 PM Lecture13

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea. reverse the pointers (make them point up from
child to parent). The result is an up-tree.

Initial state a % % g 3 % 8
'

5

Intermediate
state

Roots are the hames of each set. .~

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture13.html 17/18

T Opkim
0. Viow by 9020 O(Ml\
Q,LHA LOW Y A Do— O[(Ug”\)
510 (Gre O (o4(n)

