10/23/23, 5:05 PM Lecture12

Lecture12

CSE 417
Algorithms and Complexity

Autumn 2023
Lecture 12

Shortest Paths Algorithm and Minimum
Spanning Trees

1002202023 CSE 41T 1

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 1/24



10/23/23, 5:05 PM Lecture12

Announcements
* Reading
—4.4,45,4.7
* Midterm

— Monday, October 30
—In class, closed book

— Material through 4.7
— Old midterm questions available

* Note —some listed questions are out of scope

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 2/24



10/23/23, 5:05 PM Lecture12

Assume all edges have non-negative cost

) Dijkstra’s Algorithm f

0
S={}; d[s]=0: d[v]=infinityforvl=s %é)eQ
While S 1=V
Choose v in V-S with minimum d[v] ‘</O{ ()M
Addvto S
For each w inthe neighborhood ofv
d[w] = min(d[w], d[v] + c{v, w)) 2

=
—F

ScsE 417 3

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html

3/24



10/23/23, 5:05 PM Lecture12

Correctness Proof

* Elements in S have the correct label

* Induction: whenvisadded to S, it has the
correct distance label

— Dist(s, v) = d[v] when v added to S

T0022r2023 CSE T 4

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 4/24



10/23/23, 5:05 PM Lecture12

H% SEED

ijkstra Implementation
S={} d[s]=0; d[v]=infinityforwv!=

; . /\ﬁg
While S 1=V 0“0 ux.> X/L @]\

Choose vin V-S with minimum d[v

e s

Addvto S
For each w inthe neighborhood of v 3 \E uj
if (d[w] > d , &
£l >dM +evw) (O u\,w‘P

diw] = d[v] + c(v, w) " A //
prediw] =v
* Basic implementation requires Heap for tracking
the distance values

* Runtime O(m log n)

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 5/24



10/23/23, 5:05 PM Lecture12

O(n?%) Implementation for Dense Graphs

FOE 1 =1 TO n S"G"w‘t"‘ C{-l_ﬂ
d[1] := Infinity; lsited[i] := EALSE;
i nfinity visited[i 3@1— LT P‘m

d[s] := 0Q;

FOER 1 := 1 TO n

v 1= —-1; dMin := Infinity;
FOR jJ =1 Ton J/ Find v in V-5 to minimize d[v]
IF wvisited[j] = FALSE AND d[j] < dMin
v o= 7; dMin := d[]];
F v = -1
EETUEN ;

visited[wv] := TRUE;

FOR j =1 T0o n // Update d values from v

IF dlv] + len[v, 311 < d[3]]
d[j] := d[v] + len[v, J1:
prev([ij]l = v;

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html

6/24



10/23/23, 5:05 PM Lecture12

Future stuff for shortest paths

* Bellman-Ford Algorithm
— O(nm) time
— Handles negative cost edges
* |dentifies negative cost cycle if present
— Dynamic programming algorithm

— Very easy to implement

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 7124



10/23/23, 5:05 PM Lecture12

Bottleneck Shortest Path

* Define the bottleneck distance for a path to be
the maximum cost edge along the path

:::-f(d Es =

T0022r2023

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html

CSE M7 8

8/24



10/23/23, 5:05 PM Lecture12

Compute the bottleneck shortest paths

T0022r2023 CSE M7 4

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 9/24



10/23/23, 5:05 PM Lecture12

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 10/24



10/23/23, 5:05 PM Lecture12

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S ={}; d[s] =negative infinity; d[v] = infinity for v I=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each winthe neighborhood of v
dw] = min(d[w]., max(d[v], c(v, w)))

T0022r2023 CSE T 11

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html

11/24



10/23/23, 5:05 PM Lecture12

Minimum Spanning Tree

* Introduce Problem
Y7

* Demonstrate ibiee different greedy
algorithms

* Provide proofs that the algorithms work

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 12/24



10/23/23, 5:05 PM Lecture12

Minimum Spanning Tree Definitions

* G=(V,E) isan UNDIRECTED graph
* Weights associated with the edges

* Find a spanning tree of minimum weight

— If not connected, complain

\

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 13/24



10/23/23, 5:05 PM Lecture12

Minimum Spanning Tree

15
9
10
21
)
22
16
10/22/2023 CSE 417

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html

14

14/24



10/23/23, 5:05 PM Lecture12

Greedy Algorithms for Minimum Spanning
Tree

* Extend a tree by
including the cheapest
out going edge

* Add the cheapest edge
that joins disjoint
components

* Delete the most
expensive edge that
does not disconnect the
graph

T0022r2023 CSE 417 14

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 15/24



10/23/23, 5:05 PM Lecture12

Greedy Algorithm 1
Prim’s Algorithm

* Extend a tree by including the cheapest out
going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

T —

Label the edges in

order of insertion 16

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 16/24



10/23/23, 5:05 PM Lecture12

o—

Greedy Algorithm 2
Kruskal’s Algorithm

* Add the cheapest edge that joins disjoint
components

Constructthe MST
with Kruskal's
algorithm

Label the edges in

order of insertion 17

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 17/24



10/23/23, 5:05 PM Lecture12

Greedy Algorithm 3
Reverse-Delete Algorithm

* Delete the most expensive edge that does not
disconnect the graph

Constructthe MST
with the reverse-
delete algorithm

Label the edges in
order, of removal

18

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 18/24



" (oo o
Ty Dijkstra’s Algo |thm 3 >
Qp& for Minimum Spanning Trees

s={} d[s]=0; d[v]=infinityforv!=s e \)Kj’yh//\P

While S 1=V
Choose v in V-S with w
Addvto S

For each winthe neighborhood of v

d[w] = min({d[w]. c(v, w))

T0022r2023 CSE T 19

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 19/24



10/23/23, 5:05 PM Lecture12

Minimum Spanning Tree

Undirected Graph
G=(V,E) with edge
15 weights

T0022r2023 CSE M7 20

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 20/24



10/23/23, 5:05 PM Lecture12

Greedy Algorithms for Minimum Spanning
Tree

* [Prim] Extend a tree by
including the cheapest out
going edge

* [Kruskal] Add the cheapest
edge that joins disjoint
components

+ [ReverseDelete] Delete the
most expensive edge that
does not disconnect the
graph

T0022r2023 CSE 417 21

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 21/24



10/23/23, 5:05 PM Lecture12

Why do the greedy algorithms work?

* For simplicity, assume all edge costs are
distinct

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 22/24



10/23/23, 5:05 PM Lecture12

Edge inclusion lemma

* Let S be asubset of V, and suppose e =(u, v) is
the minimum cost edge of E, withuinSandv

in V-S
* eisin every minimum spanning tree of G

— Or equivalently, ifeisnotin T, then T is not a
minimum spanning tree

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html

23/24



10/23/23, 5:05 PM Lecture12

e is the minimum cost edge
between S and V-S

Proof

* Suppose T is a spanning tree that does not contain e
* AddetoT, this creates a cycle

* The cycle must have some edge e, = (u;, v;) with u; in S and v,
in V-S

* T,=T-{e;t+{e}isaspanning tree with lower cost
* Hence, T is not a minimum spanning tree

T0022r2023 CSE T 24

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture12/Lecture12.html 24/24



