

Announcements

- Today's lecture
 - Kleinberg-Tardos, 4.3, 4.4
- Friday
 - Kleinberg-Tardos, 4.4, 4.5
- Text book has lots of details on some of the proofs that I cover quickly

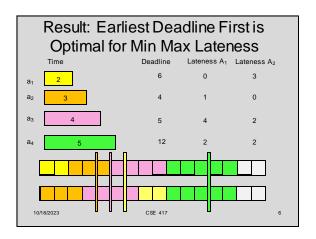
10/18/2023 CSE 417 2

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.3, 4.4)
 - Another homew ork scheduling task
 - Optimal Caching
- Start Dijkstra's shortest paths algorithm

10/18/2023 CSE 417 3

Scheduling Theory


- Tasks
 - Execution time, value, release time, deadline
- Processors
 - Single processor, multiple processors
- Objective Function many options, e.g.
 - Maximize tasks completed
 - Minimize number of processors to complete all tasks
 - Minimize the maximum lateness
 - Maximize value of tasks completed by deadline

10/18/2023 CSE 417 4

Homework Scheduling

- Each task has a length ti and a deadline di
- · All tasks are available at the start
- · One task may be worked on at a time
- · All tasks must be completed
- · Goal minimize maximum lateness
 - Lateness: $L_i = f_i d_i$ if $f_i \ge d_i$

10/18/2023 CSE 417 5

Another version of HW scheduling

- · Assign values to HW units
- · Maximize value completed by deadlines
- · Simplifying assumptions
 - All Homeworkitemstake one unit of time
 - All items available at time 0
 - Each item has an integer deadline
 - Each item has a value
 - Maximize value of items completed before their deadlines

10/18/2023 CSE 417 7

Example				
Task	Value	Deadline		
T ₁	2	2		
T ₂	3	2		
T ₃	4	4		
T ₄	4	4		
T ₅	5	4		
T ₆	1	6		
T ₇	1	6		
T ₈	6	6		
What is the maximum value of tasks you can complete by their deadlines? What do you do first? CSE 417 8				

Problem transformation

- Convert to an equivalent problem with release times and a uniform deadline
- If D is the latest deadline, set r'_i as D-d_i and d'_i as D

10/18/2023 CSE 417 9

Greedy Algorithm

 Starting from t = 0, schedule the highest value available task

```
S = Ø;
for i = 0 to D - 1
   Add tasks with release time i to S;
   Remove highest value task t from S;
   Schedule task t at i;
```

10/18/2023 CSE 417 10

Correctness argument

- Show that the item at t = 1 is scheduled correctly
 - The argument can be repeated for t=2, 3, . . .
 - Or the argument can be put in the framework of mathematical induction

10/18/2023 CSE 417 11

First item scheduled is correct

- Let t be the task scheduled at i = 1, then there exists an optimal schedule with t at i = 1
- Suppose Opt = {a₁, a₂, a₃, . . . } is an optimal schedule:
 - Case 1: t = a₁
 - Case 2: t ∉ Opt
 - Case 3: $t \neq a_1$ and $t \in Opt$

10/18/2023 CSE 417 12

Interpretation

- The transformation was done so that we could think about the first item to schedule, as opposed to the last item to schedule
- In the original problem with deadlines, this is asking "what task do I do last"
 - So this is a procrastination based approach!

13

10/18/2023 CSE 417

Optimal Caching

- Memory Hierarchy
 - Fast Memory (RAM)
 - Slow Memory (DISK)
 - Move big blocks of data from DISK to RAM for processing
- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

/18/2023 CSE 417 14

Caching example A, B, C, D, A, E, B, A, D, A, C, B, D, A 10/18/2023 CSE 417 15

Optimal Caching

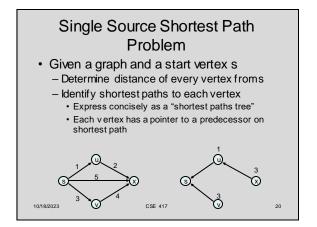
- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is know n
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

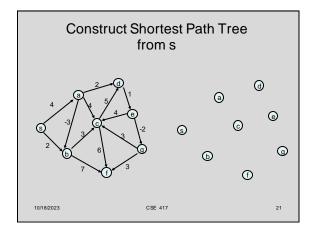
10/18/2023 CSE 417 16

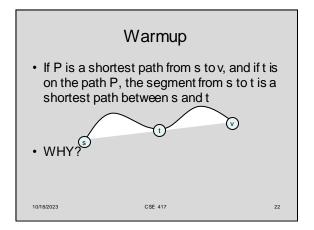
Farthest in the future algorithm

· Discard element used farthest in the future




10/18/2023 CSE 417 17


Correctness Proof


- Sketch
- · Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- · Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

10/18/2023 CSE 417 18

