CSE 417
 Algorithms and Complexity

Autumn 2023
Lecture 9 - Greedy Algorithms II

Announcements

- Today's lecture
- Kleinberg-Tardos, 4.2, 4.3
- Wednesday and Friday
- Kleinberg-Tardos, 4.4, 4.5

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today's problems (Sections 4.2, 4.3)
- Graph Coloring
- Homework Scheduling
- Optimal Caching

Interval Scheduling

- Tasks occur at fixed times, single processor
- Maximize number of tasks completed
- Earliest finish time first algorithm optimal
- Optimality proof: stay ahead lemma
- Mathematical induction is the technical tool

Scheduling all intervals with multiple processors

- Minimize number of processors to schedule all intervals

Depth: Maximum number of overlapping intervals

Algorithm

Sort intervals by start time
for $i=1$ to n
Assign interval i to the lowest numbered idle processor
\qquad

Greedy Graph Coloring

Theorem: An undirected graph with maximum degree K can be colored with $\mathrm{K}+1$ colors

Greedy Coloring Algorithm

- Assume maximum degree K
- Pick a vertex v, and assign a color not in $N(v)$ from [1, . . , K + 1]
- Always an available color
- In the worst case, this algorithm cannot be improved
- There exists a graph of degree K requiring $\mathrm{K}+1$ colors

Coloring Algorithm, Version 1

Let k be the largest vertex degree
Choose k+1 colors
for each vertex v

$$
\text { Color }[\mathrm{v}]=\text { uncolored }
$$

for each vertex v

$$
\begin{aligned}
& \text { Let c be a color not used in } \mathrm{N}[\mathrm{v}] \\
& \text { Color }[\mathrm{v}]=\mathrm{c}
\end{aligned}
$$

Coloring Algorithm, Version 2

for each vertex v
Color $[\mathrm{v}]=$ uncolored
for each vertex v
Let c be the smallest color not used in $N[v]$
Color $[\mathrm{V}]=\mathrm{c}$

Interval scheduling is graph coloring

I_{2}
$\mathrm{I}_{4} \longrightarrow$
I_{3}

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- If I can't get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness: $L_{i}=f_{i}-d_{i}$ if $f_{i} \geq d_{i}$

Example

Time
$\mathrm{a}_{1} 2$
$a_{2} \quad 3$

Lateness 3

Determine the minimum lateness

Time

Deadline

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$
- A schedule has an inversion if job j is scheduled before i where j>i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

List the inversions

Lemma: There is an optimal schedule with no idle time

- It doesn't hurt to start your homework early!
- Note on proof techniques
- This type of can be important for keeping proofs clean
- It allows us to make a simplifying assumption for the remainder of the proof

Lemma

- If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion

Interchange argument

- Suppose there is a pair of jobs i and j , with $\mathrm{d}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{j}}$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Proof by Bubble Sort

Determine maximum lateness

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

- Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

- How is the model unrealistic?

Extensions

- What if the objective is to minimize the sum of the lateness?
- EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- Caching problem:
- Maintain collection of items in local memory
- Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note - it is rare to know what the requests are in advance - but we still might want to do this:
- Some specific applications, the sequence is known
- Register allocation in code generation
- Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

- Discard element used farthest in the future

$$
\square \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{C}, \mathrm{~B}, \mathrm{C}, \mathrm{~A}, \mathrm{D}
$$

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
- There are some technicalities here to ensure the caches have the same configuration...

Later this week

