

Announcements

- Reading
- For today, sections 4.1, 4.2,
- For next w eek sections 4.4, 4.5, 4.7, 4.8
- Homework 3 is available

Highlight from last lecture: Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

Scheduling Theory

- Tasks
- Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
- Jobs scheduled, lateness, total execution time

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
- An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

```
10/13/2023
```

CSE 417

Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed

- Tasks \{1, 2, . . . N $\}$
- Start and finish times: $s(i), f(i)$

What is the largest solution?

 CSE 417

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

I = \{ \}
While (T is not empty)
Select a task t from T by a rule A
Add t to I
Remove t and all tasks incompatible witht from T

Greedy solution based on earliest finishing time

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let $A=\left\{i_{1}, \ldots, i_{k}\right\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $B=\left\{j_{1}, \ldots, j_{m}\right\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \leq \min (k, m), f\left(i_{r}\right) \leq f\left(j_{r}\right)$

Stay ahead lemma

- A always stays ahead of $B, f\left(i_{r}\right) \leq f\left(j_{r}\right)$
- Induction argument
$-f\left(\mathrm{i}_{1}\right) \leq \mathrm{f}\left(\mathrm{j}_{\mathrm{i}}\right)$
- If $f\left(i_{-1-1}\right) \leq f\left(j_{-1}\right)$ then $f\left(i_{r}\right) \leq f\left(j_{r}\right)$

Completing the proof

- Let $A=\left\{i_{1}, \ldots, i_{k}\right\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $O=\left\{j_{1}, \ldots, j_{m}\right\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times
- If $k<m$, then the Earliest Finish Algorithm stopped before it ran out of tasks

How many processors are needed for this example?

Scheduling all intervals

- Minimize number of processors to schedule all intervals

Prove that you cannot schedule this set of intervals with two processors

16

Algorithm

- Sort by start times
- Suppose maximum depth is d , create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

Greedy Graph Coloring

Theorem: An undirected graph w ith maximum degree K can be colored with $\mathrm{K}+1$ colors

Coloring Algorithm, Version 1

```
Let k be the largest vertex degree
Choose k+1 colors
for each vertex v
    Color[v] = uncolored
for each vertex v
    Let c be a color not used in N[v]
    Color[v] = c
```



```
20
```

Coloring Algorithm, Version 2
for each vertex v
Color[v] = uncolored
for each vertex v
Let c be the smallest color not used in $N[v]$
Color [v] $=c$

Lateness 1

Lateness 3

Determine the minimum lateness

