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Announcements

• Reading

– For today, sections 4.1, 4.2,  

– For next week sections 4.4, 4.5, 4.7, 4.8  

• Homework 3 is available
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Highlight from last lecture: 

Topological Sort Algorithm
While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges
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Greedy Algorithms

• Solve problems with the simplest possible 

algorithm

• The hard part: showing that something 

simple actually works

• Pseudo-definition

– An algorithm is Greedy if it builds its solution 

by adding elements one at a time using a 

simple rule

10/13/2023 CSE 417 4



Scheduling Theory

• Tasks

– Processing requirements, release times, 

deadlines

• Processors

• Precedence constraints

• Objective function

– Jobs scheduled, lateness, total execution time
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• Tasks occur at fixed times

• Single processor

• Maximize number of tasks completed

• Tasks {1, 2, . . . N}

• Start and finish times: s(i), f(i)  

Interval Scheduling
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What is the largest solution?
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Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A 

is the rule determining the greedy algorithm

I = { }

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T
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Simulate the greedy algorithm for 

each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks
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Greedy solution based on earliest 

finishing time

Example 1

Example 2

Example 3
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Theorem: Earliest Finish Algorithm 

is Optimal

• Key idea: Earliest Finish Algorithm stays 

ahead

• Let A = {i1, . . ., ik} be the set of tasks found 

by EFA in increasing order of finish times

• Let B = {j1, . . ., jm} be the set of tasks 

found by a different algorithm in increasing 

order of finish times

• Show that for r ≤ min(k, m), f(ir) ≤ f(jr)
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Stay ahead lemma

• A always stays ahead of B, f(ir) ≤ f(jr)

• Induction argument

– f(i1) ≤ f(j1)

– If f(ir-1) ≤ f(jr-1) then f(ir) ≤ f(jr)
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Completing the proof

• Let A = {i1, . . ., ik} be the set of tasks found by 

EFA in increasing order of finish times

• Let O = {j1, . . ., jm} be the set of tasks found by 

an optimal algorithm in increasing order of finish 

times

• If k < m, then the Earliest Finish Algorithm 

stopped before it ran out of tasks
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Scheduling all intervals

• Minimize number of processors to 

schedule all intervals
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How many processors are needed 

for this example?
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Prove that you cannot schedule this set 

of intervals with two processors
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Depth: maximum number of 

intervals active 
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Algorithm

• Sort by start times

• Suppose maximum depth is d, create d 

slots

• Schedule items in increasing order, assign 

each item to an open slot

• Correctness proof: When we reach an 

item, we always have an open slot
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Greedy Graph Coloring

Theorem:  An undirected graph with maximum 

degree K can be colored with K+1 colors



Coloring Algorithm, Version 1

Let k be the largest vertex degree

Choose k+1 colors

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be a color not used in N[v]

Color[v] = c
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Coloring Algorithm, Version 2

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be the smallest color not used in N[v]

Color[v] = c
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Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness = fi – di if fi ≥ di
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Example
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Determine the minimum lateness
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