
CSE 417

Algorithms and Complexity

Greedy Algorithms

Autumn 2023

Lecture 8

10/13/2023 CSE 417 1

Announcements

• Reading

– For today, sections 4.1, 4.2,

– For next week sections 4.4, 4.5, 4.7, 4.8

• Homework 3 is available

10/13/2023 CSE 417 2

Highlight from last lecture:

Topological Sort Algorithm
While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L

1

2

43

7

5

8

9

6

10

12

1110/13/2023 CSE 417 3

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• The hard part: showing that something

simple actually works

• Pseudo-definition

– An algorithm is Greedy if it builds its solution

by adding elements one at a time using a

simple rule

10/13/2023 CSE 417 4

Scheduling Theory

• Tasks

– Processing requirements, release times,

deadlines

• Processors

• Precedence constraints

• Objective function

– Jobs scheduled, lateness, total execution time

10/13/2023 CSE 417 5

• Tasks occur at fixed times

• Single processor

• Maximize number of tasks completed

• Tasks {1, 2, . . . N}

• Start and finish times: s(i), f(i)

Interval Scheduling

10/13/2023 CSE 417 6

What is the largest solution?

10/13/2023 CSE 417 7

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A

is the rule determining the greedy algorithm

I = { }

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T

10/13/2023 CSE 417 8

Simulate the greedy algorithm for

each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

9

Greedy solution based on earliest

finishing time

Example 1

Example 2

Example 3

1010/13/2023 CSE 417

Theorem: Earliest Finish Algorithm

is Optimal

• Key idea: Earliest Finish Algorithm stays

ahead

• Let A = {i1, . . ., ik} be the set of tasks found

by EFA in increasing order of finish times

• Let B = {j1, . . ., jm} be the set of tasks

found by a different algorithm in increasing

order of finish times

• Show that for r ≤ min(k, m), f(ir) ≤ f(jr)

10/13/2023 CSE 417 11

Stay ahead lemma

• A always stays ahead of B, f(ir) ≤ f(jr)

• Induction argument

– f(i1) ≤ f(j1)

– If f(ir-1) ≤ f(jr-1) then f(ir) ≤ f(jr)

10/13/2023 CSE 417 12

Completing the proof

• Let A = {i1, . . ., ik} be the set of tasks found by

EFA in increasing order of finish times

• Let O = {j1, . . ., jm} be the set of tasks found by

an optimal algorithm in increasing order of finish

times

• If k < m, then the Earliest Finish Algorithm

stopped before it ran out of tasks

10/13/2023 CSE 417 13

Scheduling all intervals

• Minimize number of processors to

schedule all intervals

10/13/2023 CSE 417 14

How many processors are needed

for this example?

10/13/2023 CSE 417 15

Prove that you cannot schedule this set

of intervals with two processors

10/13/2023 CSE 417 16

Depth: maximum number of

intervals active

10/13/2023 CSE 417 17

Algorithm

• Sort by start times

• Suppose maximum depth is d, create d

slots

• Schedule items in increasing order, assign

each item to an open slot

• Correctness proof: When we reach an

item, we always have an open slot

10/13/2023 CSE 417 18

Greedy Graph Coloring

Theorem: An undirected graph with maximum

degree K can be colored with K+1 colors

Coloring Algorithm, Version 1

Let k be the largest vertex degree

Choose k+1 colors

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be a color not used in N[v]

Color[v] = c

20

Coloring Algorithm, Version 2

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be the smallest color not used in N[v]

Color[v] = c

10/13/2023 21

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness = fi – di if fi ≥ di

10/13/2023 CSE 417 22

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

10/13/2023 CSE 417 23

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

10/13/2023 CSE 417 24

