10/8/2023

CSE 417
Algorithms and Complexity

Announcements

* Reading
— Chapter 3
— Start on Chapter 4

* Homework 2

Graph Theory

« G=(V,E) o Fath: Vi, Vyy ooy Vg With (v}, Vi)
— V: vertices, [V[=n meE .
— Simple Path
— E: edges, |E|=m - cycle
* Undirected graphs — Simple Cycle
— Edges sets of two vertices {u,v} * Neighborhood
« Directed graphs - N(v)
— Edges ordered pairs (u, v) * Distance
« Many other flavors 0 CommEiiy
B . — Undirected
— Edge/ vertices weights — Directed (strong connectivity)
— Parallel edges o Trees
— Self loops — Rooted
— Unrooted

Graph Representation

b V={a,b,c,d}

E={{a b} {a c} {a d}, {b, d}}

d
c
111
1 01
1|0 0
1|10
Adjacency List Incidence Matrix
O(n + m) space 0O(n?) space

Implementation Issues

* Graph with n vertices, m edges
* Operations

— Lookup edge

— Add edge

— Enumeration edges

— Initialize graph

* Space requirements

Graph search

* Find a path fromstot

S ={s}
while S is not empty
u = Select(S)
visit u
foreach v in N(u)
if v is unvisited
Add(S, v)
Pred[v] = u
if (v == t) then path found

10/8/2023

Graph Search

Breadth first search

* Explore vertices in layers
—sinlayer1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3. ..

Breadth First Search

* Build a BFS tree from s
Initialize Level[v] = -1 for all v;
Q={s}
Level[s] = 1;
while Q is not empty
u = Q.Dequeue()
foreach v in N(u)
if (Level[v] == -1)
Q.Enqueue(v)
Pred[v] =u
Level[v] = Level[u] + 1

CSE 417

Bipartite Graphs

* Agraph Vis bipartite if V can be partitioned
into V,, V, such that all edges go between V;

and V,

* A graph is bipartite if it can be two colored

11

8
Key observation
* All edges go between vertices on the same
layer or adjacent layers
10
Can this graph be two colored?
12

10/8/2023

Algorithm

* Run BFS

* Color odd layers red, even layers blue

* If no edges between the same layer, the graph
is bipartite

* If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

Theorem: A graph is bipartite if and only if
it has no odd cycles

13

14

Lemma 1

* If a graph contains an odd cycle, it is not
bipartite

Lemma 2

* If a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level

15

Lemma 3

* If a graph has no odd length cycles, then it is
bipartite

17

16

Graph Search

* Data structure for next vertex to visit
determines search order

18

Graph search

Breadth First Search Depth First Search

S={s} S ={s}

while S is not empty while S is not empty

u = Dequeue(S) u = Pop(S)

if u is unvisited if uis unvisited
visit u visit u
foreach v in N(u) foreach v in N(u)

Enqueue(S, v) Push(S, v)

19

Depth First Search

* Each edge goes between//

vertices on the same :|
\ II
\ ; 1
\ /

branch
* No cross edges

2

1

Computing Connected Components in
O(n+m) time
* A search algorithm from a vertex v can find all
vertices in v's component

* While there is an unvisited vertex v, search
from v to find a new component

23

10/8/2023

Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

20

Connected Components

* Undirected Graphs

Pl

Directed Graphs

22

* A Strongly Connected Component is a subset
of the vertices with paths between every pair

of vertices.

24

Identify the Strongly Connected
Components

- <7
%

25

10/8/2023

	Slide 1: CSE 417 Algorithms and Complexity
	Slide 2: Announcements
	Slide 3: Graph Theory
	Slide 4: Graph Representation
	Slide 5: Implementation Issues
	Slide 6: Graph search
	Slide 7: Graph Search
	Slide 8: Breadth first search
	Slide 9: Breadth First Search
	Slide 10: Key observation
	Slide 11: Bipartite Graphs
	Slide 12: Can this graph be two colored?
	Slide 13: Algorithm
	Slide 14: Theorem: A graph is bipartite if and only if it has no odd cycles
	Slide 15: Lemma 1
	Slide 16: Lemma 2
	Slide 17: Lemma 3
	Slide 18: Graph Search
	Slide 19: Graph search
	Slide 20: Breadth First Search
	Slide 21: Depth First Search
	Slide 22: Connected Components
	Slide 23: Computing Connected Components in O(n+m) time
	Slide 24: Directed Graphs
	Slide 25: Identify the Strongly Connected Components

