

1

3

Implementation Issues

- Graph with n vertices, m edges
- Operations
- Lookup edge
- Add edge
- Enumeration edges
- Initialize graph
- Space requirements

\square
\square

Announcements

- Reading
- Chapter 3
- Start on Chapter 4
- Homework 2

7

Breadth First Search

- Build a BFS tree from s

Initialize Level[v$]=-1$ for all v ;
$Q=\{s\}$
Level[s] = 1;
while Q is not empty
$u=$ Q.Dequeue()
foreach v in $N(u)$
if (Level[v$]==-1$)
Q.Enqueue(v)
$\operatorname{Pred}[v]=u$
Level[v] = Level[u] + 1

9

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_{1}, V_{2} such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

11

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 . . .

8

10

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

13

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

15

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

19

21

Computing Connected Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Breadth First Search

- All edges go between vertices on the same layer or adjacent layers

20

22

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

24

25

