CSE 417 Algorithms

Richard Anderson
Autumn 2023
Lecture 5

Worst Case Runtime Function

- Problem P: Given instance I compute a solution S
- A is an algorithm to solve P
- $T(I)$ is the number of steps executed by A on instance I
- $T(n)$ is the maximum of $T(I)$ for all instances of size n

Formalizing growth rates

- $T(n)$ is $O(f(n))$
$\left[\mathrm{T}: \mathrm{Z}^{+} \rightarrow \mathrm{R}^{+}\right]$
- If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
- Exist c, n_{0}, such that for $n>n_{0}, T(n)<c f(n)$
- $T(n)$ is $\Omega(f(n))$
$-T(n)$ is at least a constant multiple of $f(n)$
- There exists an n_{0}, and $\varepsilon>0$ such that $T(n)>\varepsilon f(n)$ for all $n>n_{0}$
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Announcements

- HW 1 Due tonight on Gradescope, turn in open until Sunday, 11:59 pm
- HW 2 Available
- Includes problems fromLeetCode

Ignore constant factors

- Constant factors are arbitrary
- Depend on the implementation
- Depend on the details of the model
- Determining the constant factors is tedious and provides little insight
- Express run time as $T(n)=O(f(n))$

Efficient Algorithms

- Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
- Polynomial Time has been a very successful tool for theoretical computer science
- Problems in Polynomial Time often have practical solutions

Graph Theory

- $G=(V, E)$
- V-vertices
- E - edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u,v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
- Simple Path
- Cy cle
- Simple Cycle
- Neighborhood
- N(v)
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph Representation

$V=\{a, b, c, d\}$
$E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\}\}$

Adjacency List
Incidence Matrix

Implementation Issues

- Graph with n vertices, m edges
- Operations
- Lookup edge
- Add edge
- Enumeration edges
- Initialize graph
- Space requirements

Graph search

- Find a path from s to t

```
S = {s}
while S is not empty
    u = Select(S)
    visit u
    foreach v in N(u)
        if v}\mathrm{ is unvisited
            Add(S, v)
            Pred[v] = u
            if (v=t) then path found
```


Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 . . .

Key observation

- All edges go between vertices on the same layer or adjacent layers

Can this graph be two colored?

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

