10/4/23, 11:42 AM Lecture04

Lecture(04

CSE 417 Algorithms

Richard Anderson
Autumn 2023
Lecture 4

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 119



10/4/23, 11:42 AM Lecture04

Announcements

+ Reading
— Chapter 2.1, 2.2
— Chapter 3 (Mostly review)
— Start on Chapter 4
+ Homework Guidelines
— Submit homework with Gradescope
— Describing an algorithm

+ Clarty is most important

+ Pseudocode generally preferable to just English
— But sometimes both methods combined work: hest

— Prove that your algorithm works
+ Aproofisa"convincing argument”

— Give the run time for your algorithm
+ Justify that the algorithm satisfies the muntime bound

— You may lose points for style

— Homework assignments will (probably) be worth the same
amount

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html

2/19



10/4/23, 11:42 AM Lecture04

== \N ’.{:;.-:} I

Five Problems -
Scheduling * .

Weighted Scheduling . ﬁ*‘f";‘?‘*iﬂﬁ;
Bipartite Matching SR -
Maximum |Independent Set
Competitive Facility Location

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 3/19



10/4/23, 11:42 AM Lecture04

Summary — Five Problems

*

Scheduling

Weighted Scheduling
Combinatorial Optimization
Maximum Independent Set
Competitive Scheduling

*

*

*

*

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 4/19



10/4/23, 11:42 AM Lecture04

What does it mean for an algorithm
to be efficient?

%5} Lo VW”Z“\/\C/Q
i _

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 5/19



10/4/23, 11:42 AM Lecture04

Definitions of efficiency

» Fast in practice

« Qualitatively better worst case
performance than a brute force algorithm

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 6/19



10/4/23, 11:42 AM Lecture04

Tin) = Ay
Polynomial time efficiency
TIaN= = ‘\?’ 4
« An algorithm is efficient if it has a
polynomial run time

* Run time as a function of problem size

— Run time: count number of instructions
executed on an underlying model of
computation

— T(n): maximum run time for all problems of
size at most n jr‘

Y\'L

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 7119



10/4/23, 11:42 AM Lecture04

Polynomial Time

 Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor
(depending on the algorithm)

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 8/19



10/4/23, 11:42 AM Lecture04

Why Polynomial Time??

« Generally, polynomial time seems to

capture the algorithms which are efficient
in practice

» The class of polynomial time algorithms
has many good, mathematical properties

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 9/19



10/4/23, 11:42 AM Lecture04

Polynomial vs. Exponential
Complexity

« Suppose you have an algorithm which takes nl
steps on a problem of size n

+ |f the algorithm takes one second for a problem
of size 10, estimate the run time for the following
problems sizes:

12 16 18 20

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html

14
R L S (S A B PR A\ ZOK\g”'

10/19



10/4/23, 11:42 AM Lecture04

YL O(?)
lgnoring constant factors

*

Express run time as O(f(n))

Emphasize algorithms with slower growth
rates

Fundamental idea in the study of
algorithms

Basis of Tarjan/Hopcroft Turing Award ?])\
VBT \a
Ow) O(n RIL

i

*

*

*

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 11/19



10/4/23, 11:42 AM Lecture04

Why ignore constant factors?

« Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

« Determining the constant factors is tedious
and provides little insight

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 12/19



10/4/23, 11:42 AM Lecture04

Why emphasize growth rates?

*

The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

Performance is most important for larger
problem size

« As memory prices continue to fall, bigger
problem sizes become feasible

Improving growth rate often requires new
technigques

*

*

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 13/19



10/4/23, 11:42 AM Lecture04

Formalizing growth rates

+ T(n) is O(f(n)) T:Z" > R*]

— If n Is sufficiently large, T(n) Is bounded by a
constant multiple of f(n)

— Exist ¢, ng, such that for n > ng, T(n) < c¢ f(n)

* T(n) i1s O(f(n)) will be written as:
T =0(im) T (n) & ()(Ela)

— Be careful with this notation

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html

14/19



10/4/23, 11:42 AM Lecture04

Prove 3n? + 5n + 20 is O(n?)
Letc=@ guﬁb\ak_ V\? @f

Letn, =4

T+ +1’O<3n +n +ﬂ
AN RIS

T(n) is O(f(n)) if there exist c, ng, such that for n > ng,
T(n) < c f(n)

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 15/19



10/4/23, 11:42 AM Lecture04

Order the following functions in
Increasing order by their growth rate

a) nlog*n
b) 2n2+ 10n Y
2n/100 7

)

)
) 1000n + log® n |
) n100

O

—

O O

3!1
1000 log'“n
) n1;’2

J Q =
S

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 16/19



10/4/23, 11:42 AM Lecture04

Lower bou nds
~ O(%)
. T(n) is Q(f(n))

—T(n) Is at least a constant multiple of f(n)

— There exists an ny, and £ > 0 such that
T(n) > ef(n) for all n > ng

« \Warning: definitions of Q var
o 0
* T(n) is O(f(n)) if T(n) is O(f(n)) and

- \
TEae) U\\ EYAEN

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 17/19



10/4/23, 11:42 AM Lecture04

Useful Theorems

e If lim 2% = ¢ for ¢ > O then f(n) =

n—owo g(n)

®(g(n))

« Iff(n)is O(g(n)) and g(n) is O(h(n)) then
f(n) is O(h(n))

« Iff(n)is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 18/19



10/4/23, 11:42 AM Lecture04

Ordering growth rates

 Forb>1and x>0
—logPn is O(nX)

e Forr>1andd>0
—ndis O(r

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture04/Lecture04.html 19/19



