

Summary – Five Problems

- Scheduling
- · Weighted Scheduling
- Combinatorial Optimization
- Maximum Independent Set
- Competitive Scheduling

What does it mean for an algorithm to be efficient?

Definitions of efficiency

- Fast in practice
- Qualitatively better worst case
 performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
 - Run time: count number of instructions executed on an underlying model of computation
 - T(n): maximum run time for all problems of size at most n

Polynomial Time

 Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes n! steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the follow ing problems sizes:

12 14 10 16 20	12	14	16	18	20
----------------	----	----	----	----	----

Ignoring constant factors

- Express run time as O(f(n))
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- · Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- T(n) is O(f(n)) [T: Z⁺ → R⁺]
 If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is O(f(n)) will be written as:
 T(n) = O(f(n))
 - Be careful with this notation

Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let c =

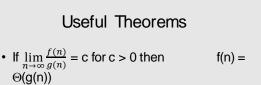
Let $n_0 =$

 $T(n) \mbox{ is } O(f(n)) \mbox{ if there exist } c, \ n_0, \ such that for \ n > n_0, \ T(n) \ < c \ f(n)$

Order the following functions in increasing order by their growth rate

- a) n log⁴n
- b) 2n² + 10n
- c) 2^{n/100}
- d) 1000n + log⁸ n
- e) n¹⁰⁰
- f) 3ⁿ
- g) 1000 log¹⁰n
- h) n^{1/2}

$\begin{array}{l} \textbf{Lower bounds} \\ \bullet \ T(n) \ is \ \Omega(f(n)) \\ - \ T(n) \ is \ at \ least \ a \ constant \ multiple \ of \ f(n) \\ - \ There \ exists \ an \ n_0, \ and \ \epsilon > 0 \ such \ that \ T(n) > \ \epsilon f(n) \ for \ all \ n > \ n_0 \\ \bullet \ Warning: \ definitions \ of \ \Omega \ vary \\ \bullet \ T(n) \ is \ \Theta(f(n)) \ if \ T(n) \ is \ O(f(n)) \ and \ T(n) \ is \ \Omega(f(n)) \end{array}$



- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))
- If f(n) is O(h(n)) and g(n) is O(h(n)) then f(n) + g(n) is O(h(n))

Ordering growth rates

- For b > 1 and x > 0

 log^bn is O(n^x)
- For r > 1 and d > 0

 n^d is O(rⁿ)