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CSE 417 Algorithms

Richard Anderson

Autumn 2023

Lecture 4

Announcements

• Reading
– Chapter 2.1, 2.2
– Chapter 3 (Mostly review)
– Start on Chapter 4

• Homework Guidelines
– Submit homework with Gradescope
– Describing an algorithm

• Clarity is most important
• Pseudocode generally preferable to just English

– But sometimes both methods combined work best

– Prove that your algorithm works
• A proof is a “convincing argument”

– Give the run time for your algorithm
• Justify that the algorithm satisfies the runtime bound

– You may lose points for style
– Homework assignments will (probably) be worth the same 

amount

Five Problems

Scheduling

Weighted Scheduling

Bipartite Matching

Maximum Independent Set

Competitiv e Facility  Location

Summary – Five Problems

• Scheduling

• Weighted Scheduling

• Combinatorial Optimization

• Maximum Independent Set

• Competitive Scheduling

What does it mean for an algorithm 

to be efficient?
Definitions of efficiency

• Fast in practice

• Qualitatively better worst case 
performance than a brute force algorithm
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Polynomial time efficiency

• An algorithm is efficient if it has a 
polynomial run time

• Run time as a function of problem size

– Run time: count number of instructions 

executed on an underlying model of 

computation

– T(n): maximum run time for all problems of 

size at most n

Polynomial Time

• Algorithms with polynomial run time have 
the property that increasing the problem 
size by a constant factor increases the run 
time by at most a constant factor 
(depending on the algorithm)

Why Polynomial Time?

• Generally, polynomial time seems to 
capture the algorithms which are efficient 
in practice

• The class of polynomial time algorithms 
has many good, mathematical properties

Polynomial vs. Exponential 

Complexity

• Suppose you have an algorithm w hich takes n! 

steps on a problem of size n

• If  the algorithm takes one second for a problem 

of size 10, estimate the run time for the follow ing 

problems sizes:

12             14              16               18             20

Ignoring constant factors

• Express run time as O(f(n))

• Emphasize algorithms with slower growth 
rates

• Fundamental idea in the study of 
algorithms

• Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious 
and provides little insight
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Why emphasize growth rates?

• The algorithm with the lower growth rate 
will be faster for all but a finite number of 
cases

• Performance is most important for larger 
problem size

• As memory prices continue to fall, bigger 
problem sizes become feasible

• Improving growth rate often requires new 
techniques

Formalizing growth rates

• T(n) is O(f(n))               [T : Z+
 R+]

– If  n is suff iciently large, T(n) is bounded by a 

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:              
T(n) = O(f(n))

– Be careful w ith this notation

Prove 3n2 + 5n + 20 is O(n2)

T(n) is O(f (n)) if  there exist c, n0, such that f or n > n0,         

T(n) < c f (n)

Let c = 

Let n0 = 

Order the following functions in 

increasing order by their growth rate

a) n log4n

b) 2n2 + 10n

c) 2n/100

d) 1000n + log8 n

e) n100

f) 3n

g) 1000 log10n

h) n1/2

Lower bounds

• T(n) is W(f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and e > 0 such that       

T(n) > ef(n) for all n > n0

• Warning: definitions of W vary

• T(n) is Q(f(n)) if T(n) is O(f(n)) and         
T(n) is W(f(n))

Useful Theorems

• If lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= c for c > 0 then f(n) = 

Q(g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then     
f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then 
f(n) + g(n) is O(h(n))
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Ordering growth rates

• For b > 1 and x > 0

– logbn is O(nx)

• For r > 1 and d > 0

– nd is O(rn)


