CSE 417 Algorithms and Computational Complexity

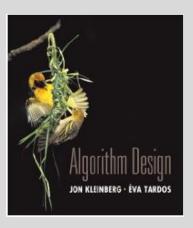
Richard Anderson
Autumn 2023
Lecture 2

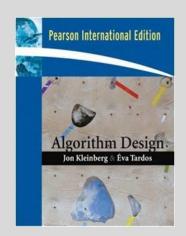
Announcements

- Course website
 - https://courses.cs.washington.edu/courses/cse417/23/au/
- Homework due Fridays
 - HW 1, Due Friday, October 6, 11:59 pm
 - Submit solutions via gradescope
- Class discussion through edstem discussion board

Course Mechanics

- Homework
 - Due Fridays
 - About 5 problems, sometimes programming
 - Programming your choice of language
 - Target: 1 week turnaround on grading
- Exams In class
 - MT Monday, October 30
 - Final Monday, December 11, 8:30-10:20 AM
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts
- Instructor Office hours (CSE2 344)
 - Monday 2-3 pm, Thursday 4-5pm,





TA Office Hours

- Megh Bhalerao,
 Office hours: Friday, 4:30-6:30 pm (CSE1 220)
- Tiernan Kennedy, Office hours: Wednesday, 9:00-10:00 am (TBD), Friday, 9:00-10:00 am (TBD)
- Yigao Li,
 Office hours: Tuesday, 11:30am-12:30 pm (TBD), Friday, 1:00-2:00 PM (TBD)
- Kaiyuan Liu,
 Office hours: Tuesday, 3:00-4:00 pm (CSE1 220), Thursday, 2:00-3:00 pm (CSE2 150)
- Sravani Nanduri,
 Office hours: Monday, 4:30-5:30 pm (CSE2 150); Friday, 11:30am-12:30pm (CSE2 153)
- Albert Weng,
 Office hours: Monday, 3:30-4:30 pm (CSE2 152), Wednesday, 3:30 4:30 pm (CSE2 151)

Stable Matching: Formal Problem

- Input
 - Preference lists for m₁, m₂, ..., m_n
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property (e.g., no instabilities):

```
For all m', m", w', w"  \text{If (m', w')} \in M \text{ and (m", w")} \in M \text{ then} \\ \text{(m' prefers w' to w") or (w" prefers m" to m')}
```

Idea for an Algorithm

```
m proposes to w

If w is unmatched, w accepts

If w is matched to m<sub>2</sub>

If w prefers m to m<sub>2</sub>, w accepts m, dumping m<sub>2</sub>

If w prefers m<sub>2</sub> to m, w rejects m
```

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

```
Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m<sub>2</sub>, w) is matched
if w prefers m to m<sub>2</sub>
unmatch (m<sub>2</sub>, w)
match (m, w)
```

Example

 $m_1: W_1 W_2 W_3$

 m_1

 $\bigcirc W_1$

m₂: w₁ w₃ w₂

m₃: w₁ w₂ w₃

 m_2

 \bigcirc W₂

w₁: m₂ m₃ m₁

w₂: m₃ m₁ m₂

w₃: m₃ m₁ m₂

 m_3

 \bigcirc W₃

Example

 $m_1: w_1 \ w_2 \ w_3$

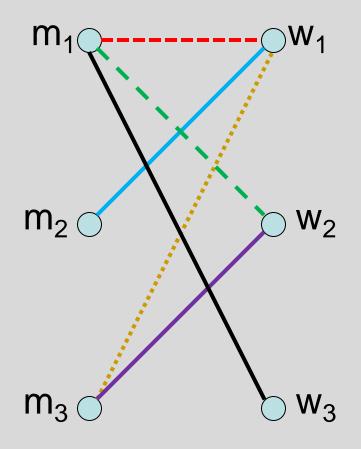
m₂: w₁ w₃ w₂

m₃: w₁ w₂ w₃

w₁: m₂ m₃ m₁

w₂: m₃ m₁ m₂

w₃: m₃ m₁ m₂



Order: m₁, m₂, m₃, m₁, m₃, m₁

Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

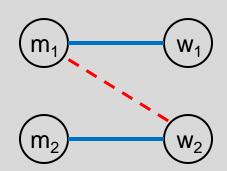
Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$$(m_1, w_1) \in M, (m_2, w_2) \in M$$

 m_1 prefers w_2 to w_1



How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

 m_1 : W_1 W_2 W_3

 m_2 : W_2 W_3 W_1

 m_3 : W_3 W_1 W_2

 w_1 : m_2 m_3 m_1

 w_2 : m_3 m_1 m_2

 w_3 : m_1 m_2 m_3

 m_1

 (W_1)

 m_2

 $\left(W_{2}\right)$

 m_3

 $\overline{(W_3)}$

How many stable matchings can you find?

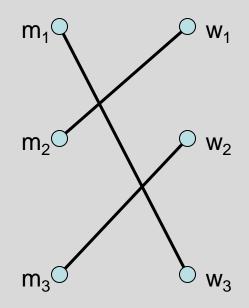
Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
 - All orderings of picking free m's give the same result
- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

m₁: w₁ w₂ w₃
m₂: w₁ w₃ w₂
m₃: w₁ w₂ w₃
w₁: m₂ m₃ m₁
w₂: m₃ m₁ m₂
w₃: m₃ m₁ m₂



What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

What is the minimum possible M-rank?

What is the maximum possible M-rank?

 Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

```
m<sub>1</sub>: W<sub>8</sub> W<sub>3</sub> W<sub>1</sub> W<sub>5</sub> W<sub>9</sub> W<sub>2</sub> W<sub>4</sub> W<sub>6</sub> W<sub>7</sub> W<sub>10</sub>
m<sub>2</sub>: W<sub>7</sub> W<sub>10</sub> W<sub>1</sub> W<sub>9</sub> W<sub>3</sub> W<sub>4</sub> W<sub>8</sub> W<sub>2</sub> W<sub>5</sub> W<sub>6</sub>
...
W<sub>1</sub>: m<sub>1</sub> m<sub>4</sub> m<sub>9</sub> m<sub>5</sub> m<sub>10</sub> m<sub>3</sub> m<sub>2</sub> m<sub>6</sub> m<sub>8</sub> m<sub>7</sub>
w<sub>2</sub>: m<sub>5</sub> m<sub>8</sub> m<sub>1</sub> m<sub>3</sub> m<sub>2</sub> m<sub>7</sub> m<sub>9</sub> m<sub>10</sub> m<sub>4</sub> m<sub>6</sub>
```

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Algorithms

- M Proposal Algorithm
 - Iterate over all m's until all are matched
- W Proposal Algorithm
 - Change the role of m's and w's
 - Iterate over all w's until all are matched

Generating a random permutation

```
public static int[] Permutation(int n, Random rand) {
   int[] arr = IdentityPermutation(n);

   for (int i = 1; i < n; i++) {
      int j = rand.Next(0, i + 1);
      int temp = arr[i];
      arr[i] = arr[j];
      arr[j] = temp;
   }
   return arr;
}</pre>
```

What is the run time of the Stable Matching Algorithm?

```
Initially all m in M and w in W are free

While there is a free m

whighest on m's list that m has not proposed to if w is free, then match (m, w) else

suppose (m<sub>2</sub>, w) is matched if w prefers m to m<sub>2</sub>

unmatch (m<sub>2</sub>, w)

match (m, w)
```

O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution