9/27/23, 11:33 AM Lecture01

Lecture(01

CSE 417
Algorithms and Computational
Complexity

Richard Anderson
Autumn 2023
Lecture 1

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 1/22

9/27/23, 11:33 AM Lecture01

CSE 417 Course Introduction

« CSE 417, Algorithms and Computational
Complexity
- MWF 10:30-11:20 AM
— CSE2 G10

+ |nstructor

— Richard Anderson, anderson@cs.washington.edu
— Office hours:
+ Office hours: Monday 2-3 pm, Thursday 4-5pm, CSE2 344
- Teaching Assistants

— Megh Bhalerao, Tiernan Kennedy, Alex Li, Kaiyuan Liu,
Sravani Nanduri, Albert Weng

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 2/22

9/27/23, 11:33 AM Lecture01

Announcements

*

It's on the course website
— https://courses.cs.washington.edu/courses/csed17/23au/

Homework weekly

— Usually due Fridays
—HW 1, Due Friday, October 6.
— It's on the website

Homework is to be submitted electronically
—Due at 11:59 pm, Fridays. Five late days.

Edstem Discussion Board

*

*

*

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html

3/22

9/27/23, 11:33 AM Lecture01

Textbook

« Algorithm Design

« Jon Kleinberg, Eva Tardos
— Only one edition rr———

 Read Chapters 1 & 2

+ Expected coverage: 3
— Chapter 1 through 7

+ Book available at:
— UW Bookstore ($197.50/$74.99)
— Ebay1($8.87 t $181.70)
— Amazon~<$159.99/$24.90)
— Electronic ($74.99)
— PDF

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 4/22

9/27/23, 11:33 AM Lecture01

Course Mechanics

L]

Homework

— Due Fridays

— Mix of written problems and programming

— Target: 1-week turnaround on grading
Exams

— Midterm, Monday, October 30

— Final, Monday, December 11, 8:30-10:20 AM

— Approximate grade weighting:
« HW: 50, MT: 15, Final: 35

Course web

— Slides, Handouts, Discussion Board
Canvas

— Panopto videos

L]

L]

L]

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html

5/22

9/27/23, 11:33 AM Lecture01

All of Computer Science is the
Study of Algorithms

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 6/22

9/27/23, 11:33 AM Lecture01

How to study algorithms

>
« Zoology (9 Q[\ 7

* Mine is faster than yours is 0 U\

 Algorithmic ideas bt»\DU} v
—Where algorithms apply O \
—What makes an algorithm work \o 0)\8\

— Algorithmic thinking & /\ﬁ
19

 Algorithm practice .~

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 7122

9/27/23, 11:33 AM Lecture01

Introductory Problem: O~

Stable Matching *JDR - - %

« Setting: \Q J
— Assign TAs to Instructors 5 (G‘_’— I

— Avoid having TAs and Instructors wanting

changes
« E.g., Prof A. would rather have student X than her 4
current TA, and student X would rather work for {/_~" —
Prof A. than his current instructor. (Eg Ve &x

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html

8/22

§7c1\.\¢ pa A Leda G—-—p

_ ,Eormal notions o—
‘S-,J\LJ,\(CL\DL T)fb}""

« Perfect matching) —
 Ranked preference lists

lMStability Ay W W, - mzﬂf\}

~
~

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 9/22

9/27/23, 11:33 AM Lecture01

Example (1 of 3)

my. Wy W m; O
m,: W, W,
W, m; m,

W, M, M, Mo W

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 10/22

9/27/23, 11:33 AM Lecture01

Example (2 of 3)

m,: Wy W, e W,
m,: W, W,
W, m, m,

W, m,; m, Mo W

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 11/22

9/27/23, 11:33 AM Lecture01

Example (3 of 3)

My. Wy Ws MQ———eW;
M,: W, W,
W, m, m,
W, M, m, m, OWs

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 12/22

9/27/23, 11:33 AM Lecture01

Formal Problem

 |Input
— Preference lists for my, m,, ..., m,

— Preference lists for wy, Wy, ..., W, ﬁ%
 Output Y, iﬁf
— Perfect matching M satisfying stability\)

property:

If (m’, w) e Mand (m”", w’') € M then
(m’ prefersw’' tow”) or (W' prefers m"” to m’)

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 13/22

9/27/23, 11:33 AM Lecture01

60_{\@_’ gl}\ .ﬁ‘\é ‘bla\
Idea for an Algorithm o 5%
m proposes to w O—O
If wis unmatched, w accepts

If wis matched to m, W\ UL)
If w prefers m to m, w accepts m, dumping m 9 ,fg

If w prefers m, to m, w rejects m

'\
Unmatched m proposes to the highest w on @
its preference list that it has not already

proposed to

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 14/22

9/27/23, 11:33 AM Lecture01

Algorithm

Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to
if wis free, then match (m, w)
else
suppose (m,, w) is matched
if w prefers m to m,
unmatch (m,, w)
match (m, w)

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html

15/22

9/27/23, 11:33 AM

My W, Wy Wy
M, Wy W3 W,

M5 Wq W5 W,

W, My Mg M,
W, M, M, m,

W3 M, M, m,

Lecture01

Example

MO

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html

OWy

O W

O W3

16/22

9/27/23, 11:33 AM Lecture01

Does this work?

* Does it terminate?
* |s the result a stable matching?

* Begin by identifying invariants and
measures of progress
—m’s proposals get worse (have higher m-rank)
— Once w Is matched, w stays matched
—w's partners get better (have lower w-rank)

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 17/22

9/27/23, 11:33 AM Lecture01

Claim: If an m reaches the end of
Its list, then all the w's are matched

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 18/22

9/27/23, 11:33 AM Lecture01

Claim: The algorithm stops in at
most n? steps

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 19/22

9/27/23, 11:33 AM Lecture01

When the algorithms halts, every w
Is matched

Why?

Hence, the algorithm finds a perfect
matching

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 20/22

9/27/23, 11:33 AM Lecture01

The resulting matching is stable

Suppose

(My, Wyq) € M, (Mg, W) € M

m, prefers w, to w,

How could this happen?

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 21/22

9/27/23, 11:33 AM Lecture01

Result

« Simple, O(n?) algorithm to compute a
stable matching

« Corollary
— A stable matching always exists

https://courses.cs.washington.edu/courses/cse417/23au/lectures/Lecture01/Lecture01.html 22/22

