

Algorithms and Complexity

Richard Anderson - Lecture 27 Coping with NP-Completeness and Beyond

Announcements

- · No final exam
- · Homework 9
 - Due March 13, 5:00 pm
- · Homework 10
 - Due March 18, 5:00 pm
 - NP-Completeness
 - Counts as a regular HW
- · Office hours by zoom

NP Completeness: The story so far

Circuit Satisfiability is NP-Complete

There are a whole bunch of other important problems which are NP-Complete

Populating the NP-Completeness

Universe

- Circuit Sat <_P 3-SAT
- 3-SAT Set
- 3-SAT <P Vertex Cover
- Independent Set <p Clique
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit < P Traveling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT <_P Graph Coloring
- 3-SAT <_P Subset Sum
- Subset Sum < P Scheduling with Release times and deadlines

Satisfiability

Literal: A Boolean variable or its negation.

 x_i or $\overline{x_i}$

Clause: A disjunction of literals.

 $C_i = x_1 \vee \overline{x_2} \vee x_3$

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

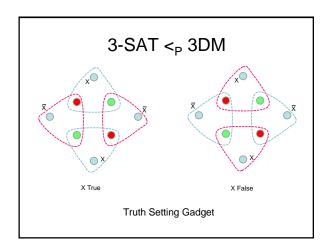
 $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$

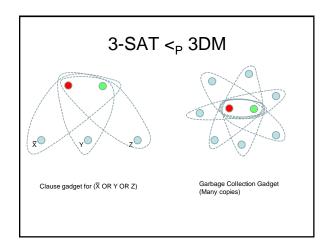
SAT: Given CNF formula Φ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

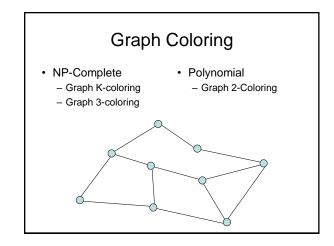
 $\text{Ex} \quad \left(\overline{x_1} \vee x_2 \vee x_3 \right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3 \right) \wedge \left(x_2 \vee x_3 \right) \wedge \left(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \right)$ Yes: $x_1 = \text{true}, x_2 = \text{true} x_3 = \text{false}$

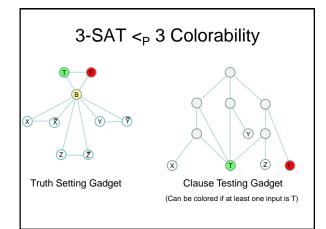
Matching Three dimensional matching (3DM)





Exact Cover (sets of size 3) XC3 Given a collection of sets of size 3 of a domain of size 3N, is there a sub-collection of N sets that cover the sets (A,B,C), (D,E,F), (A,B,G), (A,C,I), (B,D,F), (C,E,I), (C,D,H), (D,C,I), (D,F,H), (E,H,I), (F,G,H), (F,H,I) $3DM <_P XC3$





Number Problems

- · Subset sum problem
 - Given natural numbers w_1,\ldots,w_n and a target number W, is there a subset that adds up to exactly W?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in O(nW) time

XC3 <_P SUBSET SUM

Idea: Represent each set as a large integer, where the element x_i is encoded as Dⁱ where D is an integer

$$\{x_3, x_5, x_9\} => D^3 + D^5 + D^9$$

Does there exist a subset that sums to exactly $D^1 + D^2 + D^3 + ... + D^{n-1} + D^n$

Detail: How large is D? We need to make sure that we do not have any carries, so we can choose D = m+1, where m is the number of

Integer Linear Programming

- Linear Programming maximize a linear function subject to linear constraints
- Integer Linear Programming require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_i's

Constraint for clause $x_1 \lor x_2 \lor x_3$

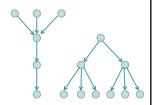
 $x_1 + (1 - x_2) + (1 - x_3) > 0$

Coping with NP-Completeness

- · Approximation Algorithms
- Exact solution via Branch and Bound
- · Local Search

Multiprocessor Scheduling

- · Unit execution tasks
- Precedence graph
- K-Processors
- · Polynomial time for
- Open for k = constant
- · NP-complete is k is part of the problem

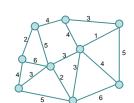


Highest level first is 2-Optimal

Choose k items on the highest level Claim: number of rounds is at least twice the optimal.

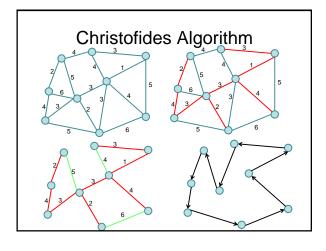
Christofides TSP Algorithm

· Undirected graph satisfying triangle inequality



- 1. Find MST
- 2. Add additional edges so that all vertices have even degree
 3. Build Eulerian Tour

3/2 Approximation



Bin Packing

- Given N items with weight w_i, pack the items into as few unit capacity bins as possible
- Example: .3, .3, .3, .3, .4, .4

First Fit Packing

· First Fit

- Theorem: FF(I) is at most 17/10 Opt(I) + 2

· First Fit Decreasing

- Theorem: FFD(I) is at most 11/9 Opt (I) + 4

Branch and Bound

- Brute force search tree of all possible solutions
- Branch and bound compute a lower bound on all possible extensions
 - Prune sub-trees that cannot be better than optimal

Branch and Bound for TSP

- Enumerate all possible paths
- · Lower bound, Current path cost plus MST of remaining points
- Euclidean TSP
 - Points on the plane with Euclidean Distance
 - Sample data set: State Capitals

Local Optimization

- Improve an optimization problem by local improvement
 - Neighborhood structure on solutions
 - Travelling Salesman 2-Opt (or K-Opt)
 - Independent Set Local Replacement

What we don't know • P vs. NP NP-Complete P = NP

If P != NP, is there anything in between

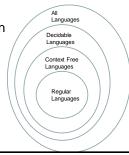
- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
 - Factorization
 - Discrete Log

Solve gk = b over a finite group

- Graph Isomorphism

Complexity Theory

- Computational requirements to recognize languages
- Models of Computation
- Resources
- · Hierarchies



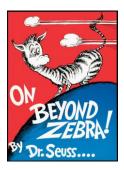
Time complexity

- P: (Deterministic) Polynomial Time
- NP: Non-deterministic Polynomial Time
- EXP: Exponential Time

Space Complexity

- Amount of Space (Exclusive of Input)
- L: Logspace, problems that can be solved in O(log n) space for input of size n
 - Related to Parallel Complexity
- PSPACE, problems that can be required in a polynomial amount of space

So what is beyond NP?



NP vs. Co-NP

- Given a Boolean formula, is it true for some choice of inputs
- Given a Boolean formula, is it true for all choices of inputs

Problems beyond NP

- Exact TSP, Given a graph with edge lengths and an integer K, does the minimum tour have length K
- Minimum circuit, Given a circuit C, is it true that there is no smaller circuit that computes the same function a C

Polynomial Hierarchy

- Level 1
 - $-\exists X_1 \Phi(X_1), \forall X_1 \Phi(X_1)$
- Level 2
 - $\ \forall X_1 \exists X_2 \ \Phi(X_1, X_2), \ \exists X_1 \forall X_2 \ \Phi(X_1, X_2)$
- Level 3
 - $\ \forall X_1 \exists X_2 \forall X_3 \ \Phi(X_1, X_2, X_3), \ \exists X_1 \forall X_2 \exists X_3 \ \Phi(X_1, X_2, X_3)$

Polynomial Space

- Quantified Boolean Expressions
 - $\ \exists X_1 \forall X_2 \exists X_3 ... \exists X_{n\text{-}1} \forall X_n \ \Phi(X_1, X_2, X_3 ... X_{n\text{-}1} X_n)$
- Space bounded games
 - Competitive Facility Location Problem
 - N x N Chess
- Counting problems
 - The number of Hamiltonian Circuits

