

Richard Anderson - Lecture 27
Coping with NP-Completeness and Beyond

Announcements

- No final exam
- Homework 9
- Due March 13, 5:00 pm
- Homework 10
- Due March 18, 5:00 pm
- NP-Completeness
- Counts as a regular HW
- Office hours by zoom

NP Completeness: The story so far

There are a whole bunch of other important problems which are NP-Complete

Populating the NP-Completeness

 Universe- Circuit Sat <p 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set $<_{p}$ Clique
- 3-SAT < ${ }_{p}$ Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman

- 3-SAT <p Integer Linear Programming
- 3-SAT $<_{p}$ Graph Coloring
- 3-SAT $<_{p}$ Subset Sum
- Subset Sum $<_{p}$ Scheduling with Release times and deadlines

satisfirnility

Literal: A Boolean variable or its negation.

$$
x_{i} \text { or } \overline{x_{i}}
$$

Clause: A disjunction of literals.

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

$$
\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex: $\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)$
Yes: $x_{1}=$ true, $x_{2}=$ true $x_{3}=$ false.

Matching

Two dimensional matching

Three dimensional matching (3DM)

3-SAT $<_{p}$ 3DM

Truth Setting Gadget

3-SAT <p 3DM

Clause gadget for (\bar{X} OR Y OR Z)

Garbage Collection Gadget (Many copies)

Exact Cover (sets of size 3) XC3

Given a collection of sets of size 3 of a domain of size 3 N , is there a sub-collection of N sets that cover the sets

$$
\begin{aligned}
& (A, B, C),(D, E, F),(A, B, G), \\
& (A, C, I),(B, E, G),(A, G, I), \\
& (B, D, F),(C, E, I),(C, D, H), \\
& (D, G, I),(D, F, H),(E, H, I), \\
& (F, G, H),(F, H, I)
\end{aligned}
$$

3DM $<_{p}$ XC3

Graph Coloring

- NP-Complete
- Graph K-coloring
- Graph 3-coloring

3-SAT < 3 Colorability

Truth Setting Gadget

Clause Testing Gadget
(Can be colored if at least one input is T)

Number Problems

- Subset sum problem
- Given natural numbers w_{1}, \ldots, w_{n} and a target number W, is there a subset that adds up to exactly W?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in O(nW) time

XC3 < $<$ SUBSET SUM

Idea: Represent each set as a large integer, where the element x_{i} is encoded as D^{i} where D is an integer

$$
\left\{x_{3}, x_{5}, x_{9}\right\}=>D^{3}+D^{5}+D^{9}
$$

Does there exist a subset that sums to exactly $D^{1}+D^{2}+D^{3}+\ldots+D^{n-1}+D^{n}$

Detail: How large is D? We need to make sure that we do not have any carries, so we can choose $D=m+1$, where m is the number of sets.

Integer Linear Programming

- Linear Programming - maximize a linear function subject to linear constraints
- Integer Linear Programming - require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_{i} 's
Constraint for clause $\quad x_{1} \vee x_{2} \vee x_{3}$

$$
x_{1}+\left(1-x_{2}\right)+\left(1-x_{3}\right)>0
$$

Coping with NP-Completeness

- Approximation Algorithms
- Exact solution via Branch and Bound
- Local Search

I can't find an efficient algorithm, but neither can all these famous people.

Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors
- Polynomial time for k=2
- Open for $k=$ constant
- NP-complete is k is part of the problem

Highest level first is 2-Optimal

Choose k items on the highest level
Claim: number of rounds is at least twice the optimal.

Christofides TSP Algorithm

- Undirected graph satisfying triangle inequality

1. Find MST
2. Add additional edges so that all vertices have even degree
3. Build Eulerian Tour

3/2 Approximation

Christofides Algorithm

Bin Packing

- Given N items with weight w_{i}, pack the items into as few unit capacity bins as possible
- Example: .3, .3, .3, .3, .4, . 4

First Fit Packing

- First Fit
- Theorem: $\mathrm{FF}(\mathrm{I})$ is at most $17 / 10 \operatorname{Opt}(\mathrm{I})+2$
- First Fit Decreasing
- Theorem: FFD(I) is at most 11/9 Opt (I) + 4

Branch and Bound

- Brute force search - tree of all possible solutions
- Branch and bound - compute a lower bound on all possible extensions
- Prune sub-trees that cannot be better than optimal

Branch and Bound for TSP

- Enumerate all possible paths
- Lower bound, Current path cost plus MST of remaining points
- Euclidean TSP
- Points on the plane with Euclidean Distance
- Sample data set: State Capitals

Local Optimization

- Improve an optimization problem by local improvement
- Neighborhood structure on solutions
- Travelling Salesman 2-Opt (or K-Opt)
- Independent Set Local Replacement

What we don't know

- P vs. NP

If $P!=N P$, is there anything in between

- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
- Factorization
- Discrete Log Solve $\mathrm{g}^{k}=\mathrm{b}$ over a finite group
- Graph Isomorphism

Complexity Theory

- Computational requirements to recognize languages
- Models of Computation
- Resources
- Hierarchies

Time complexity

- P: (Deterministic) Polynomial Time
- NP: Non-deterministic Polynomial Time
- EXP: Exponential Time

Space Complexity

- Amount of Space (Exclusive of Input)
- L: Logspace, problems that can be solved in $\mathrm{O}(\log \mathrm{n})$ space for input of size n
- Related to Parallel Complexity
- PSPACE, problems that can be required in a polynomial amount of space

So what is beyond NP?

NP vs. Co-NP

- Given a Boolean formula, is it true for some choice of inputs
- Given a Boolean formula, is it true for all choices of inputs

Problems beyond NP

- Exact TSP, Given a graph with edge lengths and an integer K , does the minimum tour have length K
- Minimum circuit, Given a circuit C , is it true that there is no smaller circuit that computes the same function a C

Polynomial Hierarchy

- Level 1

$$
-\exists \mathrm{X}_{1} \Phi\left(\mathrm{X}_{1}\right), \quad \forall \mathrm{X}_{1} \Phi\left(\mathrm{X}_{1}\right)
$$

- Level 2

$$
-\forall \mathrm{X}_{1} \exists \mathrm{X}_{2} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)
$$

- Level 3
$-\forall \mathrm{X}_{1} \exists \mathrm{X}_{2} \forall \mathrm{X}_{3} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right), \exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \exists \mathrm{X}_{3} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$

Polynomial Space

- Quantified Boolean Expressions
$-\exists X_{1} \forall X_{2} \exists X_{3} \ldots \exists X_{n-1} \forall X_{n} \Phi\left(X_{1}, X_{2}, X_{3} \ldots X_{n-1} X_{n}\right)$
- Space bounded games
- Competitive Facility Location Problem
- $\mathrm{N} \times \mathrm{N}$ Chess
- Counting problems
- The number of Hamiltonian Circuits

