

Background

- P: Class of problems that can be solved in polynomial time
- NP: Class of problems that can be solved in non-deterministic polynomial time
- Y is Polynomial Time Reducible to X
- Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X - Notation: $\mathrm{Y}<_{p} \mathrm{X}$
- Suppose $Y<_{p} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time
- A problem X is NP-complete if
- X is in NP
- For every Y in NP, $Y<_{p} X$
- If X is NP-Complete, Z is in NP and $X<_{p} Z$
- Then \mathbf{Z} is NP-Complete

NP Completeness: The story so far

Cook's Theorem

- The Circuit Satisfiability Problem is NPComplete
- Circuit Satisfiability
- Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

Reducibility Among Combinatorial Problems

Populating the NP-Completeness

 Universe- Circuit Sat <p 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set <p Clique
- 3-SAT <p Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman

- 3-SAT <p Integer Linear Programming
- 3-SAT <p Graph Coloring

Satisfiability

Literal: A Boolean variable or its negation.	x_{i} or $\overline{x_{i}}$
Clause: A disjunction of literals.	$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.	$\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?
3-SAT: SAT where each clause contains exactly 3 literals.

- 3-SAT <p Subset Sum
- Subset Sum <p Scheduling with Release times and $\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)$

[^0]
3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete
Pf. Suffices to show that CIRCUIT-SAT $\leq_{p} 3$-SAT since 3-SAT is in NP

- Let K be any circuit.
- Create a 3-SAT variable x_{i} for each circuit element i.
- Make circuit compute correct values at each node
$x_{2}=\neg x_{3} \quad \Rightarrow$ add 2 clauses. $\quad x_{2} \vee x_{3}, x_{2} \vee x_{3}$
- $\mathrm{x}_{1}=\mathrm{x}_{4} \vee \mathrm{x}_{5} \Rightarrow$ add 3 clauses: $x_{1} \vee \overline{x_{4}}, x_{1} \vee \overline{x_{5}}, \overline{x_{1}} \vee x_{4} \vee x_{5}$
- $\mathrm{x}_{0}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \Rightarrow$ add 3 clauses: $\overline{x_{0}} \vee x_{1}, \overline{x_{0}} \vee x_{2}, x_{0} \vee \overline{x_{1}} \vee \overline{x_{2}}$
- Hard-coded input values and output value - $\mathrm{x}_{5}=0 \Rightarrow$ add 1 clause: x_{5}
- $\mathrm{x}_{0}=1 \Rightarrow$ add 1 clause: x_{0}
- Final step: turn clauses of length <3 into clauses of length exactly 3. -

Independent Set

- Independent Set
- Graph $G=(V, E)$, a subset S of the vertices is independent if there are no edges between vertices in S

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT \leq_{p} INDEPENDENT-SET.
Pf. Given an instance Φ of 3 -SAT, we construct an instance (G, k) of INDEPENDENTSET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

```
G
```


3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size $\mathrm{k}=|\Phi|$ iff Φ is satisfiable.
Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one vertex in each triangle.
- Set these literals to true. \quad and any other variables in
- Truth assignment is consistent and all clauses are satisfied.
$\mathrm{Pf} \Leftarrow$ Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. -

G

Vertex Cover

- Vertex Cover

- Graph $G=(V, E)$, a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

Clique

- Clique
- Graph $G=(V, E)$, a subset S of the vertices is a clique if there is an edge between every pair of vertices in S

IS <p Clique

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Thm: Hamiltonian Circuit is NP Complete

- Reduction from 3-SAT

Reduce Hamiltonian Circuit to Hamiltonian Path

G_{2} has a Hamiltonian Path iff G_{1} has a Hamiltonian Circuit

Traveling Salesman Problem

- Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Find the minimum cost tour

Graph Coloring

- NP-Complete
- Graph K-coloring
- Polynomial
- Graph 2-Coloring
- Graph 3-coloring

[^0]: Yes: $\mathrm{x}_{1}=$ true, $\mathrm{x}_{2}=$ true $\mathrm{x}_{3}=$ false

