

CSE 417 Algorithms and Complexity

Winter 2020 Lecture 24 Network Flow Applications

Announcements

- Homework 9: Due Friday, March 13
- Exam practice problems: Available next week
- Final Exam: Wednesday, March 18

Fri, March 6	Net Flow Applications	
Mon, March 9	Net Flow Applications	
Wed, March 11	NP-Completeness	
Fri, March 13	Holiday	
	NP-Completeness	
Wed, March 18	Final Exam	

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Maxflow Algorithms
- Simple applications of Max Flow
- Non-simple applications of Max Flow

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Problem: Find the s-t Cut with minimum capacity

Review

Max Flow / Min Cut

Max Flow - Min Cut Theorem

- There exists a cut S, T such that Flow(S,T) = Cap(S,T)
- Proof also shows that Ford Fulkerson algorithm finds a maximum flow

History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Ford Fulkerson Runtime

• Cost per phase X number of phases

- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Performance

• The worst case performance of the Ford-Fulkerson algorithm is horrible

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $-O(m^2log(C))$ time algorithm for network flow
- Find the shortest augmenting path – O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 O(mnlog n) time algorithm for network flow

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

 A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y

 A matching M is a subset of the edges that does not share any vertices

• Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Converting Matching to Network Flow

Multi-source network flow

- Multi-source network flow
 - Sources $s_1, s_2, ..., s_k$
 - Sinks $t_1, t_2, ..., t_j$
- Solve with Single source network flow

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R₁, . . ., R_m
- Paper P_i requires A_i reviewers
- Reviewer R_i can review B_i papers
- For each reviewer $R_j,$ there is a list of paper L_{j1},\ldots,L_{jk} that R_j is qualified to review

Baseball elimination

- Can the Dinosaurs
 win the league?
- Remaining games:
 AB, AC, AD, AD, AD, BC, BC, BC, BD, CD

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same number of wins

Baseball elimination

- Can the Fruit Flies win or tie the league?
- Remaining games:
 - AC, AD, AD, AD, AD, AF,
 BC, BC, BC, BC, BC, BC,
 BD, BE, BE, BE, BE, BE,
 BF, CE, CE, CE, CF,
 CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
 - Ants (2)
 - Bees (3)
 - Cockroaches (3)
 - Dinosaurs (5)
 - Earthworms (5)
- 18 games to play
 - AC, AD, AD, AD, BC, BC,
 BC, BC, BC, BD, BE, BE,
 BE, BE, CE, CE, CE, DE

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Remaining games

AC, AD, AD, AD, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, CE, CE, CE, DE

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Image Segmentation

 Separate foreground from background

Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij}: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A,B) = \Sigma_{\{i \text{ in } A\}}a_i + \Sigma_{\{j \text{ in } B\}}b_j \Sigma_{\{(i,j) \text{ in } E, i \text{ in } A, j \text{ in } B\}}p_{ij}$

Pixel graph to flow graph

Mincut Construction

