

CSE 417 Algorithms and Complexity

Lecture 23 Winter 2020 Network Flow, Part 2

Outline

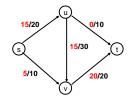
- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- · Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- · Simple applications of Max Flow

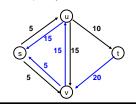
Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

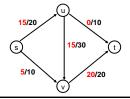
- · Flow graph showing the remaining capacity
- Flow graph G, Residual Graph GR
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity c f
 - G_R: edge e" from v to u with capacity f

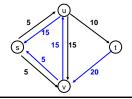




Augmenting Path Algorithm

- · Augmenting path in residual graph
 - Vertices v₁,v₂,...,v_k
 - $v_1 = s, v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j=1\,\ldots\,k\text{-}1$





Adding flow along a path in the residual graph

- Let P be an s-t path in the residual graph with capacity b
- b units of flow can be added along P in the graph G
- · Need to show:
 - new flow satisfies capacity constraints
 - new flow satisfies conservation constraints

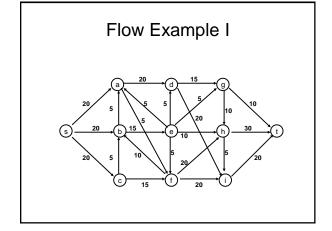
Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b>0

Add b units of flow along path P in G

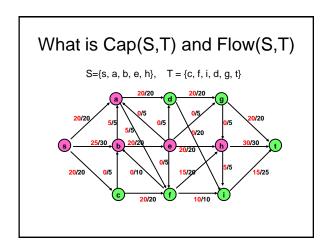
If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

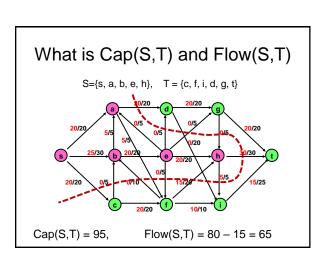


Flow Example II

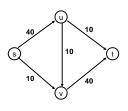
Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 Sum of flows out of S minus sum of flows into S
- Flow(S,T) <= Cap(S,T)

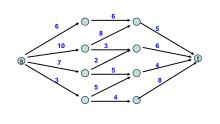




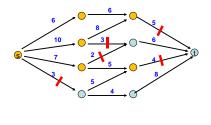
Minimum value cut



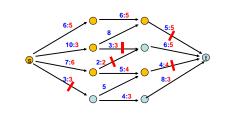
Find a minimum value cut



Find a minimum value cut

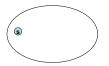


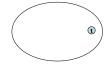
Find a minimum value cut



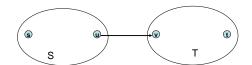
MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity





Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity



What can we say about the flows and capacity between u and v?

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

History

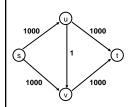
 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Ford Fulkerson Runtime

- Cost per phase X number of phases
- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- · Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible



Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- · Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow